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FOREWORD

The work reported herein encompasses study efforts during the

period September 1971 through June 1972. Without the cooperation

provided by members of the atmospheric cloud physics scientific

community it could not have been accomplished. The main goal of

this effort is to provide an experiment capability in low gravity

whereby members of the cloud physics scientific community may

further the basic understanding of cloud microphysical processes.

The scope of work, for which the Space Sciences Department at

McDonnell Douglas Astronautics Company was supported by NASA,

involved the following tasks:

Task I - Organize a scientific advisory group of authorities in

the area of cloud physics to propose, review, and evaluate experi-

ments to be flown on the manned zero-g cloud physics research

facility. This group will include scientific consultants from

universities, other government agencies, and industry. Require-

ments and opinions of cloud physicists on the proposed experiment

will be conducted with the understanding that the experiment would

complement and not compete with their research.

Task II - Define the scientific cloud physics experiments which

require a manned observer and zero-g cloud physics facility in

accordance with the following criteria:

a. Relevance to large-scale cloud behavior and weather

control.

b. Scientific merit.

c. Need for zero-gravity.

Task III - Recommend approaches to the design of the zero-g

cloud physics experiment facility and the basic equipment hardware

necessary to conduct the experiments selected, including support

requirements {nominal, peak, and minimal} and power, data require-

ments, weight, environmental restrictions, onboard computer require-

ments, calibration, size, maintenance, etc.



Task IV - Evaluate and study the relationship of the zero-gravity

cloud physics laboratory to existing and planned space transportation

systems as follows:

a. Conduct a preliminary study of facility-carrier integration

stressing adaptability and flexibility to short-notice package utilization.

b. Develop preliminary mission requirements and a project

development plan.

c. Study the requirements for and the feasibility or preliminary

zero-gravity testing.

The extension of this study effort will concentrate on the indepth

definition and analysis of the selected experiments, development of

specific design requirements for the eventual multi-experiment cloud

physics laboratory, conduct indepth definition studies on selected

early flight opportunity experiments, and study in more detail the

long lead-time components of the laboratory.

This program is being conducted on behalf of NASA's

Office of Application and Office of Manned Space Flight.

of this report are available from the undersigned.

C opie s

William W. Vaughan

Aerospace Environment Division

Aero-Astrodynamic s Laboratory

NASA-Mar shall Space Flight C enter
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I. INTRODUCTION

The science of meteorology has advanced rapidly toward the development of

an understanding of large-scale atmospheric processes. Predictions of

lar_e-scale flow patterns in the atmosphere can be made with reasonable

success because of the progress in defining and refining the equations of
motion and conservation of mass and momentum. These large-scale flow

patterns enable us to define and predict patterns of cloudiness. This cloudi-

ness itself, the processes in the clouds, and the redistribution and release

of energy in the clouds is what the average citizen thinks of as "weather".

Most violent weather phenomena result indirectly from large-scale redistri-

bution of energy and are caused by triggering the release of the latent heat of
condensation and heat of fusion within very limited volumes. The vast quanti-

ties of energy involved in hurricanes, thunderstorms and tornadoes result

from cloud processes and this energy is reIeased through condensation.

Atmospheric microphysics determines the changes of large-scale cloud

patterns that produce imbedded showers, thunderstorms, squall Iines, or

Iines of precipitation although these changes can be initiated by the underlying
terrain.

Man is inadvertently modifying the weather, through the daily addition of

milIions of tons of foreign substances into the atmosphere. Satellite pictures
show anomalous conditions in clouds which are apparentIy due to additions of

materials into the atmosphere by man. In order for man to modify the

weather and manipulate the atmosphere in a deiiberate fashion, it is necessary

to understand the microphysical processes, because these processes consti-

tute the trigger which can reiease the energy that is availabIe in nature. It

is impossible to redistribute energy over the surface of the earth on a scaIe

that wiiI affect large storm systems, but man can bring about the moduiation

of the release of energy within such a large-scaIe system. This moduiation

happens now, either due to man's own inadvertent action or due to what might
be calied "random acts of nature." Natural cirrus clouds and aircraft con-

densation traiIs have been observed to produce ice crystals which then drop

into a lower lying cloud iayer. These ice crystals triggered the freezing of

a limited portion of this lower lying super cooled cIoud deck. Such freezing

releases heat, initiates convection activity and intensifies the precipitation

reaching the ground.



Currently, man controls great river systems and water sheds by the use of

dams. By looking in from the outside and remotely sensing and measuring

cloud and atmospheric parameters, man in the future will be able to assess

a time when the atmosphere is susceptible to releasing precipitation into a

watershed. The precipitation release can then be controlled so that it will

not cause flooding or rapid run-off. Thus, instead of having random releases

of rainfall, there will be programmed releases of rainfall of roans own

design. Today we are not able to do this, because of the lack of understanding

of microphysics of clouds and the atmospheric system. We need to better

understand these microphysical properties so that we know when nature is

ready and susceptible for man to modify its pattern to his advantage.

Meteorologists have long understood the requirement for a much better

understanding of cloud microphysics. For the last thirty years there have

been concentrated efforts to understand some of the following atmospheric

processes: why does one cloud develop a spectrum of broad droplet sizes

while others develop narrow spectra of sizes; why does one cloud precipitate

and others not precipitate; why does one cloud develop rapid electrical charging,

charge separation, lightning and thunder, while other outwardly appearing

similar clouds do not; why does one thunderstorm produce hail and another

not; or why does a field of thousands of clouds produce hundreds of moderate

thunderstorms, but only one develops into a tornado. Microphysicists,

physical chemists and applied physicists, as well as meteorologists are

heavily involved in the study of the phenomena associated with these

atmospheric processes.

Numerous microphysical processes are currently under study. Nucleation,

growth and scavenging are all heavily involved in clouds and weather. Examples

include studies of the rapidity with which precipitable cloud particles grow

and the role this growth rate plays in cloud dynamics. Falling particles

exert a drive and accumulate mass which destroys positive cloud buoyancy by

providing a counteracting force. Other particles blow out the top of the cloud

to evaporate into the dry air and are not available for precipitation at the

ground. As can be seen by the equations and the cumulus development models

there are many points where parameters feed back in an important way into
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the dynamics of the cloud. This growth of a cloud, including its life span and

eventual size, is related to the original spectrum of condensation nuclei, the

speed of updraft, the volume of the cloud, and the ratio of the entrained dry

air in the total mass of ascending air. The dynan_ics of the cloud system

determines whether a line or a band of precipitation forms, whether isolated

severe cells will develop, or whether many smaller cells will result.

Very fine differences in drop size spectra and the temperature at which ice

forms can have a major impact upon weather development. Atmospheric

observations show clearly that whether the ice forms in a cloud at minus

10°, 15° or 20°C, can determine whether the cloud goes to 40, 000 feet and

becomes a thunderstorm, whether it tops off at 14, 000 feet or 15, 000 feet,

or whether the whole cloud top blows out causing the cloud to quickly dissipate.

The determining factor is the temperature at which the majority of water

within the cloud turns to ice. This temperature determines the ice crystal

shape (e. g., plates, dendrites or columns) which in turn determines the rate

of the aggregation of ice crystals and eventually controls the size of raindrops.

Man may eventually be able to choose between big raindrops or little rain-

drops. This would be especially important in areas with soil erosion problems.

The range of laboratory research extends from the millimeter rain drops and

ice crystals down to submicrometer condensation nuclei. Nature requires at

least a million 10 _tm diameter cloud drops to combine in order to produce a

one millimeter diameter precipitation drop. These droplets possess certain

surface, electrical, and aerodynamic properties which establish whether or

not these million small drops can combine to form the one big drop. Indivi-

dual ice crystals must also be studied to determine how they grow and whether

these ice crystals will somehow splinter and multiply to form more ice

crystals. Other problems include electrical charging of ice crystals during

the growth and collision processes and the effect of this charging on thunder-

storm electrification. Many microphysical processes have been studied in

some detail in the laboratory, but under conditions which are not very repre-

sentative of those in a cloud. In any cloud, the average element or group of

elements within that cloud has a lifetime of something on the order of twenty

minutes. Within this time these cloud particles will grow and perhaps

evaporate again.
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In nature there are many cubic miles of clouds. Most cloud elements are

internal to the cloud and are not effected by the edges of the cloud. A terres-

trial laboratory has the problem of trying to duplicate a system where there

are no edge effects and where a cloud can survive to have a number of things

happen to it in twenty minutes. The smallest of these cloud elements fall at

several centimeters per second and as they grow they reach fall velocities

above one meter per second. This means, in a cloud chamber that is a meter
in vertical dimension, there is less than one second of observational time for

the larger of these particles. Attempts to overcome this limitation include

the capture of individual particles and placing them on wax paper, teflon,

copper, or stainless steel surfaces, hanging them on a thermocouple, sus-

pending them on a spider web or on a thread, or by placing them between two

immiscible liquids. These approaches have not been very successful because

the suspension medium generally causes effects greater than the forces or

actions that are being measured.

There have been many significant accomplishments in terrestrial laboratories.

However, comparison between the results achieved in the laboratory and what

is observed in nature often gives no correlation whatsoever. In studying the

whole regime of meteorology from the large scale motions which produce

cloud systems down to what is called "weather" (i. e., rain, snow, lightning)

there are gaps in understanding microphysical processes which occur between

the inception of the cloud system formation and the events eventually occurring

at the ground. Much of these data lie in the area called "cloud physics".

Cloud physics research under zero or low gravity conditions offers solutions

to many of man's problems. Under zero-gravity the experimenter can

suspend a drop in a chamber and observe it through a microscope for long

periods of time. The droplet can be frozen, thawed out and another drop

propelled into it. Observations can be made of the migration and collection

of particulates that may be near or around the drop. There are numerous

experiments (i.e., does a freezing drop splinter and/or acquire a charge)

that can be done in this unique environment that cannot be done on earth.

Other important experiment areas include the diffusional growth of drops and

ice crystals and studies of the effect of temperature on ice crystals's type
and form.
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Cloud physics researchers can take advantage of zero-gravity to define many

of theprocesses in clouds which are not fully understood today. This know-

ledge would enable man to influence weather by changing, for example, drop

distributions, and nuclei concentrations, or by adding pollutant compositions.

It is plausible that early in the next century man will be preventing thunder-

storms, tornadoes or squall lines. Within the present century it is reasonable

to expect snow pack and consequent water enhancement and the possibility of

alleviating damage caused by hail and hurricanes.

The goal of this NASA sponsored study effort is to provide an experiment

capability in low gravity whereby the cloud physics scientific community may
further their basic understanding of cloud microphysical processes. The

basic concept for satisfying this goal is a general purpose laboratory available
to the entire scientific community wherein a wide variety of important experi-

ments can be accomplished.
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II. PRELIMINARY INVESTIGATIONS

During the course of the NASA-sponsored research and engineering

requirements study "Oceanography and Meteorology - A Systems Analysis to
Identify Orbital Research Requirements", (O&M Report), April 1968,

Contract No. NAS 8-21064, described in Executive Summary Report, Vol. I,

Douglas Report DAC-58120 and Technical Report, Vol. If, Douglas Report
DAC-58121, the analysis of meteorological requirements indicated significant

knowledge gaps in the area of weather and climate modification. This analysis

emphasizes that modification of the colloidal state of a cloud to dissipate fog,
cause rain or snow, alleviate natural weather disasters, etc., is a major

national concern. The O&M report indicated the requirement for better

experimental data on phase transition, particle capture, and coalescence.

These requirements are critical to a better theoretical understanding of the

colloidal modification processes. It was pointed out that terrestrial experi-

ments in all of these areas are encumbered by many difficulties.

The O&M report contained a discussion of how problems arise because of the

need to constrain a drop or a crystal in order to make observations. Several

suspension techniques, such as wind tunnels, thread or web suspensions and

special coated surfaces have been used to study and observe gravity indepen-

dent processes such as electrical forces and diffusion effects. However, the

errors introduced by the various suspension techniques are of a magnitude

equal to or greater than some of the forces or phenomena under study. If

these investigations were carried out within a zero-gravity environment, cloud

elements could be suspended for long periods without the problem of movement

and the need for solid support.

One of the major conclusions of the O&M report was that a cloud chamber in

a space laboratory, in which cloud physics experiments could be conducted,

should be considered. It appeared that the required apparatus would not be

excessive in weight and volume and that the impact upon engineering design

requirements of the spacecraft should be minimal.

The identification of zero-gravity platforms as an important means of over-

coming many of the troublesome problems of terrestrial cloud physics
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laboratories provided the impetus for the Space Sciences Department,

McDonnell Douglas Astronautics Company-West (MDAC-W) preliminary
in-house effort from 1968 to 1971. This work included discussions with

leading cloud physicists throughout the scientific community located at

universities, government laboratories and private meteorological organiza-

tions. It was determined that definite interest existed and a feasibility study
was warranted. This feasibility study was developed under experiment

definition funds provided by NASA's Office of Manned Space Flight through

the sponsorship of NASA's Office of Applications. The Marshall Space Flight

Center (MSFC) was designated as the contract center and the Aerospace

Environment Division of MSFC's Aero-Astrodynamics Laboratory was desig-

nated as the contract monitor. An extension of this contract was approved

and initiated on 16 July 1972. This included in-depth definition of candidate
experiments, further definition of the requirements for eventual Shuttle

Sortie laboratory, multi-experiment zero-g atmospheric cloud physics

laboratory and pre-Shuttle flight opportunities, and the accomplishment of
preliminary definition work on the zero-g chambers.



III. FEASIBILITY AND CONCEPTS STUDY

The primary objective of this study was to encourage the submission of

experiment suggestions from every institution where cloud physics laboratory

work is underway. An additional and parallel objective was to inform the

entire discipline about the objectives of this program. Therefore, agencies

that are involved in weather modification, field experimentation and cloud-

seeding commercial firms were included in the solicitation.

Letters were sent to scientists in the field of cloud physics and weather

modification that had articles published in meteorological journals during
the period 1968-]971. Letters were also sent to those who had presented

papers at the American Meteorological Society cloud physics meetings. This

letter solicitation included individuals associated with universities, govern-

ment laboratories and private research organizations. A limited solicitation
was made to scientists outside the United States. Attached to each of the

solicitation letters was an explanation of the zero-gravity cloud physics

program which emphasized several major points. These included the role

of gravity in limiting terrestrial research, the purpose of the solicitation

effort, and the requirements associated with suggestions, i.e., scientific

merit, relevance and the need for zero-gravity.

The letter emphasized that the intent of the zero-g cloud physics research

program was to complement and extend earth based cloud physics research.

The selected experiments would compete with other scientific experiment

candidates for manned and unmanned space flights on the basis of scientific

and technological merit. The letter also pointed out that the study would

extensively involve consultant cloud physicists in the form of an advisory

board, and as members of a team which will suggest and evaluate approaches

to specific problems envisioned in the various experiments. Selection of the

set of experiments from the list of suggestions was to be made by a panel

consisting of consultant cloud physicists, and NASA and McDonnell Douglas

Astronautics Company scientific personnel.

In addition to the mail solicitation, visits were made to the universities and

government laboratories where major cloud physics laboratory research



programs were underway and individual and group conferences were held

with many of the leading researchers in the cloud physics field. An announce-

ment of the study and solicitation effort was also published in the Bulletin of

the American Meteorological Society, Vol. 52, December 1971.

The responses to this solicitation served as the basis for further analysis

by MDAC scientists. This preliminary analysis was designed primarily to

prepare and clarify the experiment suggestions for detailed study by the

NASA-MDAC Senior Scientific Board. The requirement for this independent

scientific board was recognized and agreed upon by both NASA and MDAC-W

prior to the initiation of this feasibility study. This board's task was to

independently evaluate the experiment suggestions in terms of scientific merit

and relevance and the requirement for zero-gravi W. Four internationally

known scientists in the field of cloud physics and weather modification agreed

to serve on this board: Drs. C. L. Hosler, L. J. Battan, P. Squires, and

H. Weickman. Brief biographies of each member are included in Appendix A.

The Scientific Board held its first meeting on 3 and 4 February i972.

Drs. Hosler, Battan and Squires participated. The meeting resulted in

the selection and classification of a set of experiments that met the major

program requirements of relevance and scientific merit as well as having a

requirement for zero or low gravity. The Board agreed that the concept of

accomplishing significant cloud microphysics research in low or zero-gravity

was clearly feasible.

Selection and classification of the experiments enabled MDAC scientists to

study the engineering problems and requirements associated with the develop-

ment of a zero-gravi W cloud physics laboratory. This preliminary engineer-

ing analysis delineated the various subsystem requirements for the laboratory

and indicated potential systems and techniques to meet these subsystem

requirements. An additional objective of this phase of the research was the

delineation of the long lead-time requirements of the various laboratory

subsystems which allowed necessary program planning to be initiated.
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Two major briefings were prepared and delivered during the course of the

feasibility study. The first briefing was prepared and delivered to personnel

of the Marshall Space Flight Center on 23 February 1972 and to staff personnel

in the Office of Applications and the Office of Manned Space Flight at

Headquarters NASA on 74 February 197Z. Participants in the briefing and

their subject matter were:

Mr. William Vaughan

(Contract Technical Monitor)

Dr. C. L. Hosler

Chairman, NASA/MDAC

Senior Scientific Board

Mr. A. D. Goedeke

Chief Scientist,

Space Sciences

Dr. L. R. Eaton,

Program Scientist
and

Mr. A. B. Hollinden

Program Manager

MSFC

Pennsylvania

MDAC- W

MDAC- W

Program background and

organization.

The role of cloud physics
weather modification and bene-

fits to man.

Cloud physics program interface
with McDonnell Douglas programs.

Progress report and study
results for first five months of

study.

As a result of the 24 February 1972 briefing, NASA Headquarters requested

that a briefing be prepared for the Applications Committee of NASA's Space

Program Advisory Council. This briefing was presented on 5 April 197Z at

Goddard Space Flight Center, Greenbelt, Maryland.

The briefings were well received. The concensus was that feasibility had been

established and the very important scientific community support was present.

There was general agreement also, that the program should try to take

advantage of flight opportunities prior to Space Shuttle in order to test and

develop engineering requirements and concepts and to gather some scientific

data. Emphasis was placed on the need for early in-depth definition studies

of the candidate experiments.

Several papers and reports have been prepared and distributed. "Zero-

Gravity Cloud Physics" presented at the International Conference on Aero-

space and Aeronautical Meteorology, May 22 to 26, 1972 in Washington, D. C;

"Zero-Gravity Research in Cloud Physics and Weather Modification" presented

I0



to the International Committee on Space Research (COSPAR), Working Group

6, Applications of Space Techniques to Meteorology and Earth Surveys, in

Madrid, Spain in May 1972; and a summary report "Summary Description of

the Zero-Gravity Cloud Physics Experiment" that described the progress and
results of the first five months of the study was completed and distributed.

The substance of the material covered in the summary report and the two paper
papers is included herein.

Several significant accomplishments were achieved during the course of this

study. These include: 1) successful completion of the experiment solicitation,

2) development of scientific community support, 3) selection of high priority

experiments, 4) determination of program feasibility, and 5) identification of

a concept for the multi-experiment cloud physics laboratory including sub-

systems and components of the laboratory with particular emphasis on those

items requiring long-lead time research and development.
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IV. EXPERIMENTS--ZERO-G CLOUD PHYSICS

The previous sections have set the background of the program and have
indicated the potential of a zero-gravity laboratory for cloud physics experi-

ments. This section will discuss in approximate chronological order the

various actions completed during the NASA-sponsored feasibility study.

Solicitation

As previously stated, the primary feasibility study objective was to encourage

the submission of experiment suggestions from every institution where cloud

physics laboratory work is underway. A second objective was to inform

cloud physicists about the objectives of the program. Therefore, agencies

involved in weather modification field experimentation and commercial cloud-

seeding firms were included. Letters were submitted to over 200 individuals

in universities, government laboratories, and private research organizations.

In addition to the mail solicitation, over twenty visits were made to the

organizations where major cloud physics laboratory research programs were

underway and individual and group conferences were held with many of the

leading researchers in the cloud physics field. For example, discussions

were held with scientists at the National Center for Atmospheric Research

(NCAR), NOAA Environmental Research Laboratories (ERL) at Boulder,

Desert Research Institute of the University of Nevada, University of Wisconsin,

New Mexico Institute of Mining and Technology, University of Missouri at

Rolla, Illinois State Water Survey, State University of New York at Albany,

Colorado State University, Rand Corp., Battelle Pacific Northwest Labora-

tories, Headquarters Air Weather Service USAF, University of Denver,

Naval Research Laboratories, Pennsylvania State University, Meteorology

Research Inc., Cornell Aeronautical Laboratory, Buffalo, New York, and

the University of California at Los Angeles.

Table I summarizes the solicitation effort. Replies were received from 39 of

the 54 organizations that had been solicited and there were experiment

suggestions from 31, including most of the universities where major cloud

physics laboratory research is underway (see Figure l).
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Table I

CONTACTS WITH SCIENTIFIC COMMUNITY

Solicitations Replys Suggested

Submitted Received Experiments
J

Universities and Institutes

Government Laboratories

Private Research Organizations

Foreign Meteorology Services

27 22 18

12 8 6

8 3 2

7 6 5

TOTALS 54 39 3 1

Most organizations had several suggestors and suggestions

SOLICITATION
RESPONSE

U OF ALASKA

C_IR_ NRL ARD

ICS COMMITTEE

AMERICAN METEOROLOGICAL _(X:IETY

Figure 1
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Table 2 is a listing of the contributors grouped according to their organiza-

tional affiliation. The experiment suggestions that resulted from MDAC

pre-contract activity are listed on Table 3. There were 80 specific experi-

ments proposed which required very low gravity conditions.

Table 2 (Page i of 5)

FEASIBILITY STUDY EXPERIMENT SUGGESTERS AND SUGGESTIONS

Battelle Memorial Institute,

Alkezweeny, A. J.

Fuquay, J. J.

Slinn, W. G. N.

Pacific Northwest Labs

Scavenging processes: Brownian,

diffusiophoresis, the rmophore sis

Scavenging processes: Brownian,

diffusiophoresis, the rmophoresis

Scavenging processes: Brownian,

diffusiophoresis, the rmophoresis

Colorado State University,

Corrin, M. L.

Fort Collins, Colorado

Gas adsorption and desorption onto
aerosols

Cornell Aeronautical Labs,

Kocmond, W. C.

Buffalo, N. Y.

Nucleation of soluble, insoluble and

hydrophobic nuclei; scavenging and

resulting contact nucleation

Denver Research Institute,

Fukuta, N.

Denver, Colorado

Memory effect of ice and cloud conden-
sation nucIei, diffusion accommodation

coefficients of iiquid and ice, diffusio-

phoretic scavenging, ice crystal growth

habits, nucleation time lag phenomena,
droplet coalescence under electric fields

Furman University,

Soldano, B. A.

Dept. of Physics/Chemistry, Greenville, S.C.

Electrification processes related to

electrical double layer of cloud droplets
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Table Z (Page 2 of 5)
FEASIBILITY STUDY EXPERIMENT SUGGESTERS AND SUGGESTIONS

Harvard University,

Spengler, 5. D.

Kresge Center for Environmental Health

Droplet dynamics, interactions and

breakup

Headquarters, Air Weather Service, Scott AFB, Ill.

Appleman, Herbert Nucleation efficiencies of submicron

silver iodide particles, droplet shattering

upon freezing, charged droplet coalescence

Institute of Occupational Medicine, Edinburgh, Scotland

Ogden, T.G. Nucleation and charge separation processes.

National Center for Atmospheric Research, Boulder, Colorado

Langer, G. Nucleation and propagation of ice phase in

supercooled clouds, scavenging by droplets

and ice crystals.

Lodge, J. "Blow-out" from evaporating saturated

solutions, splintering during droplet
freezing.

Kyle, T. G. Droplet freezing process, shattering and

electrical separation.

National Oceanic & Atmospheric Administration, Environmental Research Labs,

Boulder, Colorado

Ruhnke, L. H. Ionization level of a spacecraft environment,

charge separation related to ice crystal
growth, coalescence and electric fields,

flow dynamics of air as affected by charge
and electric fields.

National Oceanic & Atmospheric Administration, Experimental Research Labs,

Miami, Florida

Cotton, W. R. Diffusional growth characteristics of ice

crystals, ice crystal collisions with electri-

cal effects, nucleation characteristics,

giant nuclei, electrical effects on collision
and coalescence.
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Table 2 (Page 3 of 5)
FEASIBILITY STUDY EXPERIMENT SUGGESTERS AND SUGGESTIONS

NOAA, National Hurricane Lab,

Scott, W. D.

Miami, Florida

Droplet nucleation, splintering, optical

properties of ice, scavenging and droplet
coalescence.

Ossevuatorio SSMA Monte Cimone-Laboratorie, Bologna, Italy

Prodi, F. Scavenging processes.

Naval Research Laboratories,

Ruskin, R. E.

Washington, D. C.

Droplet growth rates and calibration of

terrestrial equipment.

Saskatchewan Research Council,

Maybank, J.

Saskatoon, Canada

Nucleation processes (contact,

condensation).

bulk,

South Dakota School of Mines & Technology, Rapid City, S. D.

Davis, B.L. Giant nuclei growth characteristics.

State University of New York,

Blanchard, D. C.

Gokhale, N. R.

Jiusto, J. E.

Albany, New York

Droplet breakup distribution during

collision as a function of oscillation and

surface tension.

Contact nucleation versus bulk nucleation

characteristics of giant nuclei.

Freezing droplet splintering, crystal

types as a result of droplet freezing,

snowflake aggregation, tensile strength

of dendritic crystals.

Texas A&M, Dept.

Byers, H. R.

of Meteorology, College Station, Texas

Electrical effects on collision-coalescence

processes and aggregation, splintering.
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Table 2 (Page 4 of 5)

FEASIBILITY STUDY EXPERIMENT SUGGESTERS AND SUGGESTIONS

Tulane University, New Orleans,

Watts, R. G.

Sogin, H. H.

Louisiana

Thermal and mass transfer mechanisms

of diffusional growth of droplets.

Heat transfer at low Reynolds numbers.

University of Alaska, Geophysical Institute

Jayawerra,

Ohtake, T.

K. O. L. F. Supercooling of cloud droplets, ice

crystal growth habits, optical properties

of droplets and ice, splintering, and

break-up of meIting snow fIakes.

University of Clermont,

Soulage, R. G.

Clermont, France

Diffusion and coalescence growth of

droplets and ice crystals.

University of Manchester,

England

Latham, J.

P. O. Box 88, Sackville St., Manchester,

Splintering of freezing droplets,
multiplication of sea-salt condensation

nuclei by eIectricaI disintegration,

corona emissions from ice crystals.

University of Michigan,

Dingle, A. N.

Dept. of Meteorology & Oceanography

Diffusion growth of ice and liquid in

electric fieids, scavenging, nucIeation-
contact versus bulk, electrical effects on

growth processes.

University of Missouri at Rolla

Kassner, J. L., Jr. Scavenging forces.
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Table 2 (Page 5 of 5)

FEASIBILITY STUDY EXPERIMENT SUGGESTERS AND SUGGESTIONS

University of Nevada,

Hallet, J.

Hoffer, T. E.

Squires, Patrick

Telford, J. W.

Desert Research Institute

Diffusional growth of ice, and shattering,

droplet interactions (coalescence),

nucleation characteristics and electrical

characteristics of ice crystals.

Saturation vapor pressure over super-

cooled water, nonventilated evaporation

rates of droplets and diffusional growth

habits of ice scavenging.

Accommodation coefficients during

initial diffusional growth.

Collision and coalescence under "slow

motion. "

University of Roorkee,

Kamra, A. K.

Roorkee, India

Electric field and charge effects of drop-
let coalescence, charge separation due

to droplet collisions.

White Sands Missile Range, Atmospheric Sciences Lab., New Mexico

Low, R.D. Soluble particle nucleation condensation
coefficients and contact nucleation.

As a result of the emphasis in the solicitation efforts the experiments

submitted did not include all problems in cloud physics. Experiment

suggestion were biased specifically toward a requirement for zero-gravity

in addition to relevance to cloud behavior and weather modification and

scientific merit of the experiment.

Classification Basis

To facilitate analysis of the submitted experiments, they were classified

according to characteristics of primary interest. The classification com-

pared cloud constituents (liquid, liquid-ice, nuclei, and gas) with the various

cloud physics phenomena such as nucleation, growth, scavenging, charge
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Table 3

PRECONTRAGT EXPERIMENT SUGGESTERS AND SUGGESTIONS

New Mexico State,

Brook, N.M

Institute of Mining and Technology, Socorro, New Mexico

Moore, C.

NOAA, Environmental Research Labs,

Phillips, B.B.

University Park,

Weickmann, H.K.

Pennsylvania State U.,

Hosler, C.L.

State University of New York, Albany,

Gheng, R.J.

Vonnegut, B.

University of Manchester, England

Brazier-Smith, P.R.

University of Missouri at Rolla,

Carstens, J.C.

Kassner, J.L.

Podzimek, J.

Zung, J.T.

Electric effects in coalescence,

droplet interactions.

Droplet interactions, evaporation.

Boulder, Colorado

Droplet evaporations, vapor flow
from water to ice.

Ice crystal growth.

Pa.

Growth habits of ice crystals, sound

wave effects, charge generation

processes.

N.Y.

Aggregation of ice crystals, small

drop emissions from larger drops.

Rayleigh - charge breaking.

Rayleigh - charge breaking.

Missouri

Thermo and diffusiophoresis,
coalescence.

Homogeneous nucleation, drop.

inte ractions, evaporation.

Thermo and diffusiophoresis.

Droplet evaporations.

separation, and absorption.

the following paragraphs.

The basis for this classification is described in
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Precipitation mainly involves growth by ice and liquid particle collision and

adherence through riming, clustering, and coalescence. Collision processes

require relative velocities between particles which in turn requires differences

in sizes or geometric shapes. These differences are generally due to vary-

ing parameters such as condensation nuclei characteristics and humidity

distribution.

Most practical weather modification techniques are concerned with the pro-

duction of a few large ice or water particles in a cloud of many smaller

particles which thus initiates the collision process. These large particles

are produced by their enhanced diffusion growth resulting from the lowering

of their saturation vapor pressure below that of the ambient vapor pressure.

This supersaturation condition is produced in warm clouds by the addition of

giant salt particles which results in a low vapor pressure salt solution. Dry

ice (solid CO 2) and various ice nucleating agents (e.g., AgI) are used in

supercooled droplet clouds to produce a few frozen droplets with a correspond-

ing lower saturation vapor pressure. In both of these cases, the modified

particles grow at an accelerated rate, depending on temperature, humidity

and relative numbers of modified to unmodified droplets.

There are four important processes in clouds which must be better under-

stood before deliberate weather modification can occur. These are nuclea-

tion, growth, scavenging, and electrical charge separation.

Nucleation: Nucleation in cloud physics refers to the process of initiating

the liquid or ice phase of water. Water vapor (free of ions and par-

ticulates) will not form a liquid phase unless a high supersaturation exists

and the liquid will not freeze until it is cooled to below -35°C. These two

conditions for homogeneous nucleation do not exist under normal atmos-

pheric conditions, but they are of theoretical interest as a foundation for the

understanding of the general heteorogeneous nucleation processes.

The normal atmosphere contains particles below 1.0 _m diameter that

remain suspended due to their negligible fall velocities. The number of

these particles b_tw_cn 0.01 _i_u--: I. 0 _m available to serve as condensa-

tion nuclei is sufficient to limit the normal atmospheric supersaturation
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to well below one percent (relative humidity of 101.0 percent). Particles

greater than one micrometer are generally referred to as "giant nuclei"

and are limited in number due to gravitational fallout and because they

are the first nuclei to become active in water droplet formation. Giant

nuclei are provided artificially for warm cloud modification.

Ice nuclei are much more limited in numbers than condensation nuclei

because of their special physical requirements. Cloud seeding often

uses the supercooled condition that results from this shortage of ice

nuclei.

Laboratory investigations have shown that once certain particles have

acted as nucleating sites for water or ice, their activation characteristics

are changed. This phenomenon is known as an ice and condensation

nuclei memory effect.

Nucleation processes are involved in all forms of weather. At the present

time, most weather modification involves the manipulation of nuclei

(cloud seeding) within a given weather system. Current research is aimed

at determining the role of the various atmospheric nuclei parameters

(number, composition, effectiveness, and sources, including pollutants).

Further understanding of the role of nuclei will aid in modification efforts

such as: the increase of snow and rain for city and agricultural use; the

decrease of destruction by hurricanes and hail; and the dissipation of air-

port and highway fog and smog. Basic to such modifications is knowledge

of the nuclei to use, the appropriate number to introduce, the proper

injection region in the weather system, and the optimum injection time

during the development cycle.

Growth: Once nucleation has been initated, liquid or ice grows by con-

densation (vapor diffusion) until the particle reaches a few tens of microm-

eters in size. The quantitative values of the various thermal and vapor

accommodation coefficients are very important to this initial diffusional

growth phase. Above twenty micrometers diameter, field observations

and theoretical computations indicate that other growth processes in
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addition to diffusion must be involved in order to explain the growth of

particles to millimeter size in reasonable times, where they are able to

fall from clouds as precipitation.

Included here are processes such as collision, coalescence (merging

of two droplets), aggregation and riming. These processes require a

coexistence of particles (liquid or ice) with a range of sizes. Studies of

the growth rates during various phases of growth are an important area
of laboratory research and include: Diffusional growth under normal

atmospheric supersaturations (relative humidities below I01.0 percent),

and freezing with possible break-up (splintering) as related to growth

processes.

The study of growth processes is important in the "when and where"

questions of weather modification while splintering affects the quantities

of nucleating materials required.

Scavenging: Droplets and ice crystals greater than a few micrometers

in diameter collect (scavenge) gases, radioactive particles and other

atmospheric constituents. There is a continuing process of "washing-out"

or cleansing of the atmosphere.

Particles below a few micrometers in diameter are collected by several

processes, including those associated with Brownian motion, temperature

gradients during evaporation (thermophoresis), vapor transport during

condensation (diffusiophoresis), gravity induced collisions (inertial) and

electrical forces on charged particles. Normal fallout removes particles

greater than 20 _m in diameter. Scavenging is important in connection

with ice nucleation efficiencies relative to weather modifications tech-

niques and wash-out efficiencies as related to air pollution problems.

Electrical Charge Separation: Cloud physicists are concerned with the

processes of obtaining charge separation within natural clouds. Laboratory

investigations are concerned with charge transfer processes that occur

during collision of ice with liquid or ice. Better understanding of
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electrical processes has potential in such areas as the reduction of

forest fires and property damage due to lightning, and the assessment of

the role of electrical phenomena in growth and scavening processes.

Clas sification Summary

Table 4 presents the number of suggested experiments in each classification.

It should be recognized that within each element of the matrix there exists the

possibility of a number of experiments and that within each experiment there

are a range of sub-experiments involving parameter changes such as tem-

perature, electrical field, and humidity. Two items should be noted. First,

no experiments were initially submitted in the area of photochemical processes

due to the source of the solicitation lists. This area was suggested later in

connectionwith its effect on fogs and smog, and is important enough that further

solicitation along this area is being pursued. The second item is the lack of

suggestions in such areas as scavenging by ice particles. Further analysis

showed that although important, gravity associated difficulties were such a

deterrant in these areas that little or no research was currently underway and

that very little had been completed in the past. These areas will be included

as the scientific community becomes better acquainted with the potential of

a zero-gravity facility.

Figure 2 categorizes the various phenomena in areas of applications. These

areas include modification of rain, snow, fog, hail, thunderstorms, hurricanes

and smog. Progress has been made in the area of dissipation of cold fogs with

dry-ice and silver iodide and dissipation of warm fogs by using giant salt

(NaC1) nuclei. Recent tests have shown that these methods are not effective

with the warm fog-smog combination that exists in such locations as the

Los Angeles International Airport. A low gravity environment would be

especially beneficial in this area of research.

Senior Scientific Board Evaluation

A summation (Appendix B) of the pertinent facts concerning the submitted

experiments was compiled and sent to the Scientific Board for analysis prior

to a meeting of NASA, MDAC-W and Board members on 3 and 4

February 1972. This summation included summary sheets describing the
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Table 4

EXPERIMENT CLASSIFICATION REPLY STATISTICS

Substance Examined

Pheno me na Liquid Liquid - Ice Ice Nuclei

Nucleation

Growth

Scavenging

Charge Separation

Optical

Photo Chemical

Ab- and Adsorption

Other Processes

16

4

9

I0 i0

6

3 l

l 2

3

EXPERIMENT CLASSIFICATION REPLY STATISTICS
APPLICATIONS

PHENOMENA

NUCLEATION

GROWTH

SCAVENGING

CHARGE SEPARATION

OPTICAL

PHOTO CHEMICAL
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Figure 2
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suggested experiments and an experiment classification matrix. In addition

to defining zero-g advantages, this summation also included a listing of present
terrestrial laboratory problems. This summation did not involve specific

ideas on how to perform the experiments as experiment design was scheduled

later in the program.

The analysis of the Scientific Board included a discussion of the scientific

merit, relevance, zero-g requirements of each experiment suggestion, and
an estimate of the relative priority of each of the suggested experiments.

Three categories were chosen and the highest priority was given to those

experiments which would produce currently needed data. These are categor-

ized in Table 5 as category 1 experiments. Other important experiments

were category 2 experiments. Those suggestions that needed further clarifica-

tion as to purpose, method, relevance or the requirement for zero-gravity

were labeled as category 3 experiments.

The Scientific Board then analyzed each of the priority experiment suggestions

with a view toward the operational ease or difficulty of performing such an

experiment. Two major factors were considered: hardware requirements and

man-involvement requirements.

Hardware considerations included the requirements of chamber type, environ-

mental ranges, motion control and supporting equipment. Man-involvement

considerations dealt with educational background requirements relative to

decision making processes and the manipulative and observing requirements

during the conduct of the experiment. The results of the analysis are also

shown in Table 5 and indicate that there is a wide range of hardware and man-

environment requirements. Some very important and significant research

can be accomplished with off-the-shelf hardware and by an astronaut following

a check list. Other experiments are very involved requiring special motion

and environmental controls as well as very refined observation systems.

The more sophisticated experiments may require an astronaut with several

years of graduate training in cloud physics. As is shown on Table 5, there

are important high priority experiments (Category 1) that are in the least

complex operational classification (Category 4).
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Each of the experiment suggestors were asked to discuss the terrestrial

research difficulties associated with their experiments and also to discuss the

advantages of a zero-gravity environment. The Scientific Board used these

comments as a basis and interjected their own ideas and suggestions. A con-

densation of these follows.

Terrestrial Research Difficulties

Although many advances have been made in the field of cloud microphysics,

researchers have always been hampered and limited by certain problems.

Current researchers are faced with many of the same difficulties. A brief

description of some of these research difficulties as related to nucleation,

growth, scavenging and electrical charge separation are identified and examples

of problems associated with chambers are described below.

Nucleation: Nucleation investigations of particles between 0. 1 and 10 _m

diameters involve the determination of the nucleating properties of

natural atmospheric nuclei and potential cloud seeding materials. The

important parameters in these determinations are temperature, humidity

and size distributions.

Expansion chambers, mixing chambers, flat plates covered with hydro-

phobic materials (e.g., teflon) and specially prepared filter papers

have all been used to study the characteristics of ice and condensation

nuclei. All nucleation activity is a function of humidity, and in addition,

temperature and rate of cooling must also be considered for ice nuclea-

tion. The greatest limitation is the inability to provide in laboratory

chambers the low supersaturations and low cooling rates that are

characteristic of normal atmospheric processes. These limitations are

related to problems of gravity induced settling and convection. The plate

or filter support techniques introduce unnatural effects because of the

physical contact between the nuclei and support surface.

Growth: Extensive studies have been made of growth processes such as

collision of large water droplets and diffusion growth of large water and
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ice particles by the use of vertical fall columns and wind tunnels. These

approaches permit a realistic dynamic study of certain growth processes

that include properties induced by gravity.

Another area that is receiving a great deal of attention is the diffusional

growth from the initial nucleation of submicrometer diameter particles.

These studies usually involve the growth of these initially small parti-

cles to a few micrometers where they can be observed with an optical

microscope and photographed. Diffusion, expansion and mixing chambers

are being used to study these growth processes. Great effort is being

expended to obtain the low supersaturations and cooling rates that are

characteristic of the normal atmosphere. These latter conditions have

received more emphasis as a result of the large discrepancies between

laboratory measurements, theoretical computations and field observations.

Laboratory conditions produce a monodispersed cloud of droplets fairly

independent of the initial nuclei source. Theory, using laboratory results,

indicates that the necessary collision processes will not be initiated.

Field measurements have shown a range of cloud droplet sizes in contrast

to the uniform droplet sizes found in the laboratory.

A partial answer to these differences is believed to lie in the unrealistic

laboratory growth conditions. Gravity induced air convection and particle

settling prevent the achievement of desired lower coolir_g rates and lower

super saturations.

Scavenging: Scavenging of submicrometer particulates onto supercooled

droplets is one of the most important processes in inducing droplet freez-

ing (and resulting weather modification) through artifical seeding (e.g.,

Agl). Scavenging by ice and liquid also plays an important role in cleansing

the atmosphere of gases and particulate matter. Scavenging involves

Brownian and gravity induced motion, and forces due to temperature and

vapor gradients.

Brownian motion, temperature and vapor gradients are not a function of

gravity. Thus these forces are often studied by the suspension of droplets

on fibers or by the use of various chambers. Experiments using fiber

28



suspensions have indicated that the vapor gradient does play a role in the

transport of submicrometer particles to ice and water surfaces. The

thermal conduction of the support fiber does not permit the evaluation of

the thermal gradient forces.

Gravity settling and observation restrictions limit the use of various

chambers for the qualitative and quantitative studies of the various

scavenging forces.

Electrical Charge Separation: Most laboratory studies of the atmospheric

related electrical charge production and separation mechanisms involve

the mechanical support of the liquid or ice. These supports are necessary

to eliminate motion and thus permit the necessary delicate electrical

measurements. A number of measurements have been made but there

is no real agreement as to which mechanism is the most important. This

uncertainty is a result of the extreme difficulty of preventing electrical

and thermal conduction through the supports.

Chambers: In nature initial diffusional droplet growth occurs over a

period of tens of seconds to minutes under supersaturations often much

less than 1.0 percent (101 percent relative humidity). In an earth-based

laboratory, the study of such particle growth processes involves the use

of diffusion chambers as shown on Figure 3. Considering the physics of

diffusional processes, a diffusion chamber must be limited to about one

centimeter in height if a given fixed relative humidity is to be obtained in

a few seconds.

Because of gravity induced motions, terrestrial laboratory diffusion

chambers must produce accelerated growth rates by the use of high

supersaturations (greater than 0.3 percent) in order to prevent the grow-

ing droplets of water from falling onto the lower chamber wall. This

relatively high supersaturation produces droplets of nearly equal dia-

meter in contrast to field observations.

Cloud physicists express a strong need for the use of lower supersatura-

tion (< O. 3 percent) as found in the atmosphere and the associated longer
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Figure 3

growth times. These conditions are necessary before a realistic under-

standing of the initial droplet growth by diffusion can be understood and

utilized in weather modification processes.

An analysis similar to the above can be made for an expansion chamber.

A condensed version of this analysis follows:

In an expansion chamber, the desired supersaturation is obtained by an

expansion of the air. The air is cooled upon expansion while walls

remain at the initial warmer temperature. Heat conduction from the wall

to adjacent air causes air density variation and results in gravity driven

convection. This convection limits most expansion chambers to consid-

erably less than one second useful time.

Advantages of a Zero-Gravity Environment

A consideration of the laboratory problems indicates that gravity is one of

the major limiting factors. There is a range of particulate sizes between
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0.01 btm to 10t_m that are involved in physical processes which are independent

of gravity. A zero or low gravity environment would enhance the observation

and study of these processes. The advent of space platforms provides the

potential for cloud microphysics research in zero-gravity. The elimination

of gravity would provide three basic advantages in conducting cloud physics

experiments. The first advantage is the removal of mechanical support of

drops and crystals. Without such mechanical support, the following experi-

ment problems can be eliminated: (1) thermal conduction through supports;

(Z) mechanical obstruction to heat and mass transport; (3) surface modification

by fluid-interface contamination; (4) electrical conduction through supports;

(5) optical interference of support; and (6) mechanical damping of supports.

The second advantage is the separation of gravity from other forces of interest.

This is accomplished because in zero-g the problems of convection, drop

settling or fallout, and relative motion between particles are not serious.

Since these problems are essentially eliminated, better observation can be

made of electrical forces, particle motion due to vapor flow (diffusiophoreses)

and temperature differences (thermophoreses), and Brownian motion.

The third advantage is the long duration of observing time available because

drops and particles can be suspended for indefinite periods. This is especially

applicable to atmospheric physics research chambers.

A space platform would permit the reduction of droplet settling by at least

l03 with a potential reduction of 105 . With the settling restriction removed,

the physical design requirements for diffusion chambers can be relaxed.

A space platform would reduce air convection in expansion chambers by a

factor between 103 and 10 5 . This convection reduction along with appropriately

cooled chamber walls places the expansion chamber as a prime choice for

cloud physics experiments in a low gravity environment.
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Experiment Approaches and Concepts

The basic assumptions that guided MDAC's initial approach to the zero-g

feasibility study as well as the Scientific Board analysis were as follows:

The ultimate zero-gravity cloud physics experiments facility should be a

laboratory available to the entire cloud physics community in which a wide

range of experiments could be performed. The laboratory should be an

independent, complete, pallet-type facility which could be integrated into any

of a number of space flight opportunities. Man's involvement is important

and will become progressively more so, starting with elementary manipula-

tions and data gathering, and moving toward decision making capabilities

requiring a substantial educational background in cloud physics. The possi-

bility of early carry-on experiments should be considered in order to more

fully define the requirements for a sophisticated advance experiment facility.

In addition, the early experiments should be directed toward providing some

fundamental scientific answers.

The analysis of the Scientific Board with regard to experiment importance and

difficulty agreed with these basic assumptions. The Boards conclusions

were: (1) It is feasible and highly desirable that the advantages of zero-gravity

be assimilated into the cloud physics research program, (2) There are a large

number of important experiment areas and experiments that can be done early

in zero-gravity, (3) Some very important cloud physics research could be

accomplished with relatively simple equipment by a non-scientist astronaut

in a carry-on mode, but the majority of important experiments will require

sophisticated apparatus and a trained experimenter.

The Scientific Board analyzed the experiment suggestions first of all with

respect to scientific merit and a brief condensation of the analysis is contained

in Table 5. The first group of experiments, which can be characterized as

very high priority but not requiring special cloud physics training for the

experimenter, included four basic classifications. They are (1) accommoda-

tion coefficients for nuclei, droplets and ice crystals; (2) vapor pressure over

super-cooled droplets; (3) "blow-out" associated with the evaporation of sat-

urated solutions and "freeze-splintering" of supercooled droplets; and (4) ice-

nuclei memories. It should be understood that these are not single experiments
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but generally they involve parameter changes such as temperature,

pressure, relative humidity, electric fields, initial charge distribution,

acoustical fields and gas composition. The second group of equally high pri-
ority experiments are differentiated by the requirement for experimenter

decision - making that require a cloud physics background. Included in this

group are (1) ice riming; (2) propagation of ice phase during freezing;

(3) contact versus bulk nucleation; (4) scavenging including the effects of
diffusiophoresis, thermophoresis and Brownian motion; (5) corona emission

from ice crystals; and (6) optical parameters of ice crystals including scatter-
ing coefficients and polarization. There will be a variety of experiments

within each of these areas dependent on parameter variability. The third

group of experiments were determined to be very important in terms of

scientific merit but of lower priority than the first two groups. Generally
they will require an experimenter with a cloud physics background. This

group includes (1) giant nuclei; (2) collision or coalescence; (3) liquid cloud
condensation nuclei memories; and (4) dipole studies associated with ice

growth or melting in an electric field. A small number of experiments were

set aside by the scientific board for further reconsideration. These were

experiments where the requirements for zero-gravity were not clearly

established or further clarification of the experiment suggestion was required.

An example of the group one experiment is the supercooled water saturated-

vapor-pressure experiment. Suggested by Dr. Thomas Holler of the Desert

Research Institute, the requirement for a few large particles to initiate the

collision process was previousIy described. The role of nuclei in the produc-

tion tion of these large liquid and ice particles was also mentioned. The basic

diffusion growth equation for both ice and liquid takes the form

dM 47rC P - Ps

dt

whe r e

M

- (a+B) p
S

= the mass of the particle

t = time

C = form factor (C = r for a sphere; C = 2 r/_ for a disk shape)
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A,
B _

Ps =

p =

are functions of temperature and saturated vapor pressure

saturation vapor pressure of the ice or liquid particle

ambient vapor pressure.

This equation indicates the relation of the mass growth rate (dM/dt) to the

vapor pressure difference between the ambient (p) and the particle (ps). In

cold cloud seeding, p wouId be the saturation vapor pressure of the supercooled

water droplets while Ps is the lower saturation vapor pressure of the few ice

crystals. Laboratory determinations of this pressure difference are ham-

pered by the inability to cool water much below 0°C. This problem exists

because freezing is induced by surface contact between the water under

investigation and the support medium.

The presently used values of the saturation vapor pressure over supercooled

water are extrapolated from above-freezing measurements. Because of the

importance of this vapor pressure difference in weather modification, it is

important that these extrapolated values be either verified or corrected.

A zero-gravity environment would permit the suspension of a water drop in

the center of a temperature controlled chamber as shown in Figure 4. The

chamber temperature would be lowered at appropriate temperature steps,

e.g., 0. 5°G, and sufficient time allowed for diffusion and thermal equilibrium

within the chamber. The chamber internal temperature and pressure would be

recorded and the temperature again lowered. These steps would be repeated

over a temperature range from +20°G to -30°C. Freezing would not be pre-

mature because there will be no support contact with the drop.

The evaluation of particle scavenging forces is an example of a Group 2 experi-

ment suggested by scientists at Battelle Northwest. Scavenging of submicrom-

eter particies b, droplets and ice crystals greater than a micrometer is the

means by which the atmosphere is cleansed of the particulate matter which

possesses negligible fall velocity. This same principle of scavenging is also

the process that is utilized for most weather modification efforts.

An important problem in scavenging is the evaluation of the relative importance

of the possible scavenging mechanisms (thermal, diffusional and Brownian
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OBJECTIVE

• DETERMINE SATURATION VAPOR PRESSURE OF SUPER COOLED WATER
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SPECIFIC _ _IIREMENT SATISFIED

• DIFFUSIONAL GROWTH OFICE IN A SUPERCOOLED WATER CLOUD

• EVACUATE CHAMBER

• INSERT DROPLET

. /-- LIQUID
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TEMPERATURE --/_ _ PRESSURE

METHOD

---o COOL (0.5(: STEPS, -40C< T< + 20)
• MEASURE TEMPERATURE AND PRESSURE

1 _ WATER

OC
T_

Ftgure 4

motion) of submicrometer particles onto droplets and ice crystals between one

and twenty micrometers. Inertial properties of particle motion plays an

increasing role above this size range.

Terrestrial laboratory experiments are hampered by either gravity fallout

of the droplets or the results are restricted by the thermal conduction of any

mechanical supports.

A zero-gravity environment would permit the suspension of particles and

droplets having no fall velocity and no mechanical supports. Figure 5 indi-

cates one method that could be used to evaluate the importance of thermal,

diffusional and Brownian motion forces in the scavenging processes.

Freezing nucleation (initiation of freezing) would be used as an indication of

when a particle has been captured by a supercooled droplet. A cloud of drop-

lets and nuclei would be injected into a chamber maintained at a known tem-

perature, pressure, and humidity according to the conditions 1, 2 and 3 as
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indicated in Figure 5. The number of frozen droplets versus time indicates

the relative scavenging efficiency under a given set of conditions. The cham-

ber would be cleaned (purged) and another cloud of droplets and particles

injected under different conditions.

The three basic conditions are as follows"

Evaporation: The humidity is adjusted so that the droplets are evaporat-

ing at a given rate. Under this condition the droplet is cooler than its

environment providing a temperature gradient toward the droplet (gradient

from higher to lower temperature). The water vapor gradient is outward

from an evaporating droplet as indicated by the arrows in the figure.

Random Brownian motion would be inward in all cases.

Equilibrium: No vapor difference or temperature difference exists

once equilibrium is obtained. The only scavenging force would be

Brownian motion.

PARTICLE SCAVENGING FORCES EXPERIMENT

WilY

• PRECIPITATION PROCESSES AND ATMOSPHERIC CLEANSING

WF.ATHER MODIFICATION ELEMENT
• SCAVENGING

OBJECTIVE

• DETERMINE RELATIVE IMPORTANCE OF THERMAL (T), DIFFUSION (Vp)
AND BROWNIAN (B) FORCES

APPLICATION

• QUANTITIES OF SEEDING MATERIAL NECESSARY TO ACCOMPLISH

DESIRED MODIFICATION

SPECIFIC KNOWLEDGE REQUIREMENT SATISFIED

• EFFICIENCY

METHOD

• PURGE CHAMBER

LIQUID elNJECT DROPLETS AND NUCLEI

DRON'EF"_*CONI'ROL TEMPERATURE, PRESSURE

NuC, l-7 \^NDHUMIDIn'

PRESSURE "1 EVAPORATION
TEMPERATURE
HUMIDITY

*COUNT NUMBER VERSUS TIME

• COMPARE COUNTS

*1 +T, -Vp, +B *2 0, 0, +B

*3 -T, +Vp, +B

- 0 AVp . 0 Vp

'_2 EQUILI BRI UM *3 CONDENSATION

Figure 5

36



Condensation: The temperature and vapor conditions are now reversed

from the evaporation case.

The analysis would consist of the evaluation of the counts obtained under the

three basic conditions given above. The equilibrium condition provides

effectiveness of Brownian motion. The subtraction of these counts from the

evaporation experiment results will give a number indicating the relative

importance of temperature and diffusion. A positive number indicates that

the temperature difference is more important that the negative effect of vapor

diffusion. Similar comparison between the equilibrium and condensations

would indicate in complementary form the relative importance between

temperature and vapor effects with a positive number indicating the greater

importance of vapor diffusion.

These experiments would be performed with different conditions of super-

cooling, humidity and pressures to obtain the force dependence on these

factors.

Laboratory Concepts and Requirements

An extensive analysis of the experiment suggestion was initiated with a view

toward developing the requirements for zero-gravity cloud physics laboratory

equipment and apparatus. MDAG scientists studied each experiment sugges-

tion in order to determine the requirements and to identify the problems

associated with the performance of the experiment. In some cases additional

information regarding requirements was requested from the original sug-

gesters and the replies were incorporated into the analysis. The various

requirements were then grouped into common areas which evolved into the

subsystems of the total zero-g cloud physics facility. These subsystems are

chambers, generators, environmental controls, motion control, composition

control, observations, data management and charge control.

It was recognized that parallel efforts regarding platform interface and total

system integration would have to be undertaken.
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The establishment of requirements in each subsystem was followed by an

analysis to determine potential components that would meet subsystem require-

ments and have the capability for operation in zero-gravity conditions. As an

example in the observations area, there are a wide range of requirements.

Table 6 presents an analysis of how the various phenomena of cloud physics

are currently observed and potential techniques for future observations.

The next analysis step was to establish priorities and schedules for the

definition work necessary for each of these subsystem components. Some

components will require long-lead time definition and development. Other

components will require less time. The identification of the long-lead time

requirements and developing plans for meeting them was an important

accomplishment.

Preliminary analysis is currently underway to study each of the potential

components. University consultants are and will be heavily involved during

this step especially in the chamber and environmental control areas. Expert

in-house capabilities exist and are being utilized in platform interface and

observation areas. MDAC is emphasizing generation and motion control sub-

systems and parts of the observation subsystem. Basic calculations to

determine if requirements can be met are the first part of this analyis. If

the component has the necessary capabilities it must be examined in terms of

weight, power, volume, special controls and instrumentation requirements.
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Table 6
OBSERVATIONS

(Present and Possible Techniques)

Phenomenon
(to be observed)

Observation Technique
(now)

Possible Obs. Tech.

( Futur e )

Diffus ion

Coalescence

Break-up

Scavenging

Nucleation

Charge Separation

Rate and points of

growth from

phot og ra ph s

Photog raphi c

Freeze-try to detect

splinters

Freezing distribution

vs evaporation,
equilibrium conden-

sation and particle

size, type, and

tempe rature

Grow nuclei to a few

micrometers size to
ob se rye

Physical contact
measurements.

a. Holographic interferometry

b. Vapor profile - spectroscopy

(Raman and others)

c. Temp. of droplet (IR scan)

d. Temp. profile around drop

e. Drop temperature control by

absorption heating

f. Holographic volume recording

of changes in a cloud and ice

propagation studies

g. Evolution of cloud drop/crystal

size spectra-diffusion and

competition.

Hologram of single and multi-

ple events

Collision process with inter-

ference hologram - deforma-

tion, etc.

Holographic {and video) and

photo of volume - sequence

of times to permit detection

by growth of small ejected

particles.

Hologram- clouds - ice

propagation.

Raman impurity evaluation.

Raman scan to give particle

concentration around

droplet.

Particle concentration and

diffusion rate in droplet.

Vapor and temperature pro-

file (IR, UV and Raman)

Monitor from 0. 1 _m size and up

if possible with size distribution

given.

Remote charge detection ac, dc,

and sound fields.

ao

b.

a.

b.

C.

a.

b.

C.
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V. EARLY FLIGHT OPPORTUNITIES

Throughout the course of the zero-gravity cloud physics program,

consideration has been given toward utilizing pre-ShuttIe flight opportunities

for concept testing and scientific research. This testing approach is highly

desirabIe considering the potential involvement of the final Shuttle atmos-

pheric cloud physics laboratory and in light of the lack of experience of work-

ing in a zero-gravity environment. Several planned man-in-space missions

have been preliminarily examined for their suitability as potential carriers

for small portable cloud physics experiments. These portable experimenta-

tion and testing modules (PETM) have two objectives: 1) to provide a sig-

nificant contribution to a relevant scientific objective, and 2) to testing

one or more subsystem components being developed for zero-g laboratory.

To this end, the Skylab, Apollo and the eariy Shuttle test flights have been

examined and have been found to have PETM carrier potential. However,

the flight vehicle, hardware and support systems are fixed several years in

advance due to their complexity and required reliability. In addition, vehi-

cles such as the Apollowere designed for space travel and not for experi-

mental laboratory research.

The basic premise is to design the PETM's so that they are nearly self-

sufficient in order to minimize integration impact. Weight, volume and crew

safety are the primary factors and the major integrative linkage would be

power. However, advantage will be taken of all existing support facilities

within these carriers.

The Skyiab system includes experiment and support facilities that could be

utilized for preliminary cIoud physics experimentation. Design constraints

involve keeping the voIume small enough for the Skylab storage units and

keeping power requirements within the specified iimits. The following are

examples of two special facilities available aboard the Skylab for experiments.

A Materials Processing Facility (MPF) is located in the Multiple Docking

Adapter of the Skylab, contains a 41. 28 cm diameter sphere with a 15.24 cm

port, and is provided with vacuum and temperature control. This facility can

be used for vacuum and temperature studies of aerosols, ice crystals and
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particulates. Fig. 6 shows the M512 MPF integrated in the Skylab

Orbital Workshop.

There are also food chillers and freezers provided for the storage of food

and could be utilized for cloud physics experiment purposes. The freezer

maintains a temperature of -12 ±5 degrees Centigrade and the chiller a

temperature of +4 ±3 degrees Centigrade.

The Apollo Command Service ModuIe (CMS) has room for demonstration

type experiments and small PETM's. Cameras, video and water guns

might all be utilized for fundamental cloud physics and laboratory engineer-

ing experiments.

There is also the possibility of placing PETM's aboard early test Shuttle

flights. Although these test flights may require lower altitudes a great deal

of component testing and checkout could be accomplished.

About midway through the feasibility and concept study, a set of five experi-

ments were submitted to a MDAC/SkyIab evaIuation group to determine the

ORBITAL WORKSHOP

MDA INTERNAL VIEW (RIGHT SIDE)

FILM VAULT NO. 1--_

FILM VAULT NO. 4"-_j

MS]ZI479

M512 f_

RESTRAINTS-'_ WIN_ VAULT

NO. 2

Figure 6
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compatibility between experiment and vehicle. These experiments were to

meet the Skylab requirements of "Simple Engineering/Manufacturing Tests

to Exploit Zero-Gravity Environment. "

Appendix C contains a two page form for each submitted experiment along

with a sheet summarizing the priorities of the experiments. In addition to

the material submitted to the Skylab group, Appendix C contains a short

description of the need for the experiment as well as a brief example pro-

cedure for each experiment. A few notes are also included relative to

simplified "carry-on" versions of the experiments.

Appendix C experiments that are suitable for early flight opportunities

include the following: single water droplets colliding with larger water

surfaces in order to study collision processes, droplet dynamics and drop-

let break up; evaporation of ice or water in a vacuum to determine important

accommodation coefficients involved in precipitation processes and studies

of vapor pressure over super cooled water.

The information of Appendix C is preliminary and is to be used only as

guidelines for future concept developments.
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VI. PAYLOAD INTEGRATION CONCEPTS

A continuous effort will be made throughout the course of this study to

prepare and maintain up-to-date experiment program definition data for use

in integrated payload planning activity. The NASA maintains a Candidate

Experiment Program which consolidates information regarding experiment

requirements, payload analysis, operational constraints, and candidate

missions. Standard experiment program definition format sheets continuing

data for cloud physics experin_ents are included in Appendix D. The first

experiment is the ultimate laboratory for the Shuttle of the 1980's, the other

two are typical experiments that could utilize the laboratory or be candidates

for pre-Shuttle flight opportunities. The data on these format sheets repre-

sent the May 1972 concept and they are subject to change throughout the

course of the program.

Figure 7 is a picture that represents a concept of the zero-gravity cloud

physics laboratory. The zero-gravity cloud physics facility will be a labora-

tory available to the entire cloud physics community in which a wide range of

ZERO-G CLOUD PHYSICS FACILITY

td

Figure 7
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experiments can be performed. The laboratory will be an independent,

complete, pallet-type facility which can be integrated into any of a number of

space flight opportunities. Man's involvement is important and will become

progressively more so, starting with elementary manipulations and data

gathering, and moving toward decision making capabilities requiring a

substantial education background in cloud physics.

This laboratory will be versatile enough to accommodate a wide variety of

experiments. The operational concept involves individual experiments on

Sortie type missions, conducted initially by scientifically trained astronauts,

and eventually by the experiment scientist himself.

The Shuttle Sortie mode is ideally suited for the conduct of research within a

cloud microphysics laboratory as it provides the necessary combination of

relatively short term turnaround for conduct of the experiment and receipt

of the results, accommodations for required volume and weight needed for

the multiexperiment laboratory, availability of man to conduct experiments

and the required levels of a near zero-gravity environment.

Requirements include:

Length of Flights - 5 to 7 day sortie missions.

Orbit - No constraints on orbital altitude or inclination.

Data Requirements - Data - Return from orbit of photographic, digital/

analog magnetic tape records, astronaut log (voice record) of experi-

ment. Voice communication with control station on Earth with TV

coverage desirable.

Role and Number of Personnel - One cloud-physics trained scientist/

payload specialist required. Highly desirable to have assistance of one

other payload specialist. Role is to conduct a series of cloud physics

experiments, make necessary real time adjustments/decisions, and

record results.

Stabilization and Pointing - No pointing accuracy requirements; stabiliza-

tion requirements are those which are adequate to maintain less than

10-3g condition for periods of approximately 20 minutes.
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Power and Thermal - Approximately 200 watts peak power, l watt

average operation power; 2 hrs/day average operation per sortie with

occasional operation twice per day. Required Shuttle Sortie Laboratory

ambient thermal environment, ]0 ° to 30°C (cloud chamber internal

environment will range from +35 _ to -35°C).

Weight and Volume - Estimated <225 kg weight for laboratory with

volume approximately 0.9 m x 1.2 m x 2.4 m. Self-contained facility

except for power requirement.

General Support Equipment - Experiment expendables and supporting

3
equipment not in basic laboratory estimated at about 22 kg and 0. 06 m .

Special Operating Constraints - No operational constraints at present

time; however, astronaut motion should be minimal durin_ experiments.

Contamination Requirements - Minimal, except inside cloud chambers

which are an integral part of the experiment laboratory and, are there-

fore, controlled by the experiment.

Other - Shuttle Sortie Laboratory accommodations desired to permit

easy access. Some experiments may require earlier activation (in the

first 24 hrs. after shuttle lift-off).

In order to accommodate the multi-experiment concept the laboratory must

possess certain adaptability features. The principal component of a cloud

microphysics laboratory is the cloud chamber. Three different types of

chambers are in general use in terrestrial research. These are thermal

expansion chambers, diffusion chambers and general purpose chambers.

Figure 7 shows the concept of interchangeable chambers. More than one

chamber of a type may be desirable in order to avoid purging and con-

tamination problems. It may be possible to design a single chamber in

which both expansion and diffusion research can be done and this concept

is under study.

Figure 7 also pictures a complex observational system whose components

includes still and motion cameras, microscopes and a sophisticated laser

holography system. Other observational components are under study and

the ultimate laboratory may involve various combinations of observational

equipment.
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Other components shown on Figure 7 include an electrical droplet motion-

control system, and storage units for the gases that will be used for chamber

composition control and for chamber preconditioning. Not specifically

shown are the very important environmental control systems for tempera-

ture, pressure and humidity.

The laboratory concept will remain fluid and changes in concept are expected

to be the normal course of action. However, two precepts must be con-

tinuously considered: 1) the laboratory must be versatile enough to serve

a large variety of experiments and 2) there are interface limitations of

weight, volume and energy supplies.
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VII. LONG-LEAD TIME PRELIMINARY DESIGN STUDIES

An important part of the preliminary analysis of the experiment suggestions

was a determination of the kinds of equipment and apparatus required to

accomplish these experiments in zero-gravity. Although the basic purpose of

this laboratory development was to take advantage of the very low gravity, it

was recognized that many pieces of laboratory equipment had working mech-

anisms and systems that were gravity dependent. This factor has been and

will continue to be an important design consideration for the zero-g laboratory.

Using the experiment suggestions as a base, MDAC developed a list of com-

ponent equipment for each of the subsystem areas. Each of these potential

components will be studied. University consultants are and will be heavily

involved during this study especially in the chamber and environmental

control areas. MDAC is emphasizing generation and motion control sub-

systems and parts of the observation subsystem. Basic calculations to

determine if requirements can be met are the first part of this analysis. If

the component has the necessary capabilities it must be examined in terms

of weight, power, volume, special controls and instrumentation requirements.

The next phase of the analysis will be the selection of the minimum number

of components necessary to meet the requirements and the examination of the

compatibility of these selected components. This will be an iterative process

leading to a final subsystem concept package. There will also be "whole

system" analysis which essentially studies the compatibility of the various

subsystems with each other.

The list of Subsystem Potential Components follows:

CHAMBERS

Diffusion Chamber s

Expansion Chambers

General- Purpose Chambers

GENERATORS

Liquid Droplet Generators

Liquid Cloud Generators

Solids (ice)

Solids (Nuclei)

Gases
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ENVIRONMENTAL CONTROLS

Tempe ratur e
Pressure

Dew Point Temperature

Gas Composition
Electric Field

MOTION CONTROLS

Electric Fields

Magnetic Fields
Air Jets

Acoustic Waves

Photon Forces

Laminar Air Flow

Thermopho r esi s

Diffusiophoresis

Photophores is
Probes (Physical Contacts)

CHARGE CONTROLS

Charging Probes

Contact Charging
U.V. Ionization

Alpha Particle Ionization

lon Guns

COMPOSITION CONTROL

Premixed Gases

Internal Mixing

Droplet Coatings

Single Particle Contacts

OBS E RVAT IONS

Visual

Still Photography

Motion Photography

T.V. Video

Microscopes

Laser Holography
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Raman Spectroscopy
I.R. Spectroscopy
Lidar

Optical Scattering Properties

MDAC developed a study program plan based on these component requirements.

Those components requiring the longest lead time analysis were to be started

early. The program component definition study plan is pictured in Fig. 8.

One large research area not previously explained is experin_ent in-depth

definition. This definition involves an extensive detailed description of

equipment and performance-time-lining for each experiment approved by
the Scientific Board. The definition must be completed before all hardware
and supporting equipment requirements can be determined.

Two long-lead time chamber studies were completed. Dr. 5ames L. Kassner

and staff of the University of Missouri at Rolla completed a study of cloud

PROGRAM PLAN

1972 1973 1974 1975

EXPERIMENT DEFINITION

DIFFUSaON C_R /

EXPANSION CHAMBER /

GENERAL PURPOSE CHAMBER

TEMPERATURE CONTROL 1

_E CONTROL

_|_ CONTROL I

OBSERVATION SUBSYSTEM I

DATA MANAGEMENT SUBSYSTEM

AEROSOL AND DROPLET GENERATORS

MOTION CONTROL SUBSYSTEM i

CHARGE CONTROL AND MEASUREMENT i
I

COMPOSITION CONTROL ANO PRECONDITION i
I

VEHICLE INTERFACE I
TOTAL SYSTEM STUDIES

/
i

/

/

/

Figure 8
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simulation chambers with the emphasis on thermal expansion chambers. This

study also dealt with the special problems of operating a thermal expansion

chamber under zero-g conditions. He concluded that a cloud simulation

chamber such as the one under development at the Graduate Genter for Gloud

Physics Research at the University of Missouri-Rolla is well suited for appli-

cations in a zero-gravity environment. He pointed out that although the basic

concept is valid most of the hardware would have to be redesigned to meet the

space, weight and power limitations. The emphasis of the second consultant

study was on diffusion chambers. Dr. Patrick Squires and associates of the

Desert Research Institute at University of Nevada studied the special prob-

lems of zero-gravity operation upon both continuous-flow and static diffusion

chambers. Special emphasis was placed on determining what types of experi-

ments could best be done in each of the different chambers.
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VIII. DEVELOPMENT AND TESTING FACILITIES

A low gravity environment presents a totally new dimension to research and

manufacturing. Very little experience has been accumulated concerning the

requirements and conditions of performing experiments under low-g conditions.

A number of demonstrations have been performed on the various Apollo mis-

sions. Electrophoresis, composite casting, liquid transfer and thermal dif-

fusion demonstrations were performed on Apollo 14. A general discussion

concerning the potentials of manufacturing in space is given by Hans

Wuenscher (to be published in Sept. 1972, Astronautics and Aeronautics}.

Because of the "remoteness" of these potential laboratory facilities, it is

highly desirable to utilize all available terrestrial and terrestrially controlled

means to test various concepts that are to be used in a space laboratory.

Several methods are presently available for obtaining various levels of low

gravity conditions. These are:

• Drop tower (300 ft giving 4 sec of low-g, MSFC)

• Aircraft zero-g maneuver (KC-135 research aircraft delivers

15-20 sec of low-g)

• Sounding rocket (Aerobee delivers 3-6 min. of low-g}

• Suborbital rocket (up to 30 min of low-g)

• Zero-g bubble simulation chamber (minutes to days}.

The first four methods have been used extensively during the space program

to develop systems and to train astronauts. These techniques offer relative

low cost and rapid turnaround time for the development and testing of con-

cepts for use in the low-g environment of a space laboratory.

Atmospheric physics experiments that can benefit from a zero-gravity condi-

tion will require acceleration levels below 10 -3 of the earth's gravitational
-4 -6

acceleration (go } (10 to 10 being desirable} and have durations from tens

of seconds to tens of minutes.

The drop tower approach drops a container in free fall inside a second con-

tainer. The outer container acts as a drag shield to minimize aerodynamic
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drag on the experimental components. Figure 9 illustrates the Marshall

Space Flight Center (MSFC) drop tower which is located in one corner of the

Saturn V Dynamic Test Stand. The tower's capabilities are summarized in

the Figure. The drop tower's 4 seconds can potentially be used to test such

concepts as drop injection, charging and positioning. The rapid turnaround

time and low cost is attractive.

The KC-135 research aircraft has been extensively used to train astronauts

for space conditions. The KC-135 is a specially modified Boeing four engine

jet U. S. Air Force air refueling tanker comparable in size to the 707 com-

mercial airliner. Figure 10 gives the characteristics of the parabolic zero-g

KC-135 trajectory as well as the required acceleration pattern beofre and

after the low gravity segment. Around 40 such trajectories can be flown in

a two to three hour flying session. Experience has shown that the level of g

for the aircraft fluctuates considerably during any given maneuver thus limit-

ing actual uniform periods with very low acceleration to something less than

14- 20 sec.

The sounding and suborbital rockets indicate significant time periods of near

zero-g are available. As with the other methods, the actual acceleration

levels from second to second must be evaluated to see if the technique is

usable for a given concept test. In the case of rockets, spin about their long

axis is used for stabilization. The required spin will then limit the lower

total acceleration level attainable. Figure 11 is a typical trajectory for an

Aerobee sounding rocket. As mentioned, the "near-zero"-g period must be

evaluated. For some cases this amounts to less than 0. 01 g due to residual

spin after the indicated "despin. "

An alternate approach to the generation of a zero or low-g environment is

that of simulation. A bubble chamber simulation technique has been inde-

pendently developed by MDAC-W. This concept utilizes neutrally buoyant

polymer soap bubbles to simulate a droplet in zero-gravity conditions. These

bubbles are capable of surviving for days to years depending mainly on the

internal gas and the use of dust free gases. The bubbles have a fluid surface

and electrical properties similar to water and thus react to electric fields
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and sound fields in a way that is similar to a water drop. Various zero-g

generation, charging and positioning concepts for water drops can be tested

using this zero-g simulation technique. Figure 12 illustrates an early version

of this technique using electric fields for bubble position control.

Questions arise regarding the use of rockets and other unmanned spacecraft

as vehicles for cloud physics research. Briefly stated, the cloud physics

experiments presented in this report are not experiments in which sensors

are used to observe phenomena beyond our control such as remote sensing

of the earth, the moon and Mars. The proposed cloud physics experiments

dealt with in this feasibility study are laboratory experiments where the

ambient conditions are controlled as well as observing what happens. As

with most research of this type, a significant part of the experiment is the

direct observation by a scientist who is able to perceive and analyze events
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Figure 12 

tha t  w e r e  unexpected. Such events  would general ly  be mis sed  if  the  exper i -  

ment  w a s  fully automated.  In addition t o  th i s .  the  cost  of the equipment for  

appropr i a t e  fu l l  automated rocket  exper iment  would be considerably m o r e  

than the  cos t  of a semi-automated  expe r imen t  aboard the  Space Shuttle.  

F r o m  the  abox-e cons idera t ions ,  some oi the  va r ious  a\.ailable s h o r t - t e r m  

low acce le ra t ion  techniques show potential  a s  concept tes t ing ar.d development 

techniques.  

they- will be uti l ized w h e r e  appropr ia te .  

F u r t h e r  anal)-sis and cons idera t ion  will be g i l e n  to  each  and 
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IX. PRO,I ECTION

This study established that the concept of accomplishing significant cloud

microphysics research in low or zero gravity was clearly feasible. MDAC-W

emphasis will continue toward the definition, design, development and testing

of a reuseable cloud physics laboratory to be operated on manned Space Shuttle

flights in the early 1980's.

NASA and MDAC-W will continue to examine pre-Shuttle space flight oppor-

tunities as carriers of portable cloud physics experiments. Various degrees

of experiment complexity may be attainable dependent on the carriers physi-

cal and power capabilities and the astronauts time availability

There are a number of important experiments that will be compatible with

early shuttle missions. These experiments have spacecraft requirements

which are between those requirements of the Apollo and the full Shuttle

laboratory.

The ultimate product, the Zero-Gravity Atmospheric Cloud Physics Laboratory

will be a carefully designed, cost effective facility capable of serving a large

portion of the cloud physics community. This laboratory combined with the

continuing important terrestrial laboratory and field research programs can

provide the means for major breakthroughs in weather modification.
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Appendix A
NASA-MDAC SENIOR SCIENTIFIC BOARD BIOGRAPHIES

Chairman, Dean Charles L. Hosler, Jr., b. Honey Brook, Pa., June 3, 1924;

Meteorology. B.S., Pa. State, 47, M.S., 48 Ph.D. (Meteorology), 51.

Inst. Meteorology, Pa. State, 48-51, Asst. Prof., 51-54, Assoc. Prof.,

54-58, Prof., 58-, Head, Meteorology Department, 60-65, Dean, Col.

Mineral Industries, 65-, Hydrographer, Pa., Dept. Forests and Waters,

49-59. Consult., President's Adv. Cmt. on Weather Control, 54-57;

Nuclear Sci. and Eng., 60-64; Hazelton Nuclear Sci., 62-65; HRB-Singer,

Inc., 58-64; Esso Research and Engineering Co., 64-, I_w Firms, 51-,

U. S. N. , 43-46, AAS; Meteorology Advisory Committee of the Environ-

mental Protection Agency; NAS-NAE Committee Advisory to NOAA;

Chairman of the Panel on Weather Modification for NAS-NAE Committee

Advisory to NOAA; Storm Fury Advisory Committee; Chairman of the

AMS Radio and TV Board; Councilor and Secretary of the Executive

Committee for the AMS.

Dr. Louis J. Battan, 5141 E. Rosewood Ave., Tucson, Ariz. Meteorology,

New York, N.Y., Feb. 9, 23; B.S.N.Y. Univ., 46, Harvard: Mass.

Inst. Tech: M.S., Chicago, 49. Ph.D. (Meteorology), 53. Radar

Meteoroiogist, U.S. Weather Bureau, 47-51; Res. MeteoroIogist,

Chicago, 51-58; Dir. Inst. Atmospheric Physics and Prof. Meteorology

and Climate, Ariz., 58-, Consult., U.S. Weather Bureau; National

Science Foundation; U. S. Air Force; U.S. Army - 42-43; U. S. A. F.

44-46; American Meteorology Society (Meisinger Award 1962; Brooks

Award 1971); President of AMS, 66-67; Commissioner Scientific and

Technological Activities of the AMS; Vice President of MeteoroIogy

Section of AGU (as of 1972); Section Secretary, Section on Atmospheric

and Hydrospheric Sciences of the AAAS; Vice Chairman, Committee of

Atmospheric Sciences of the NationaI Academy of Sciences; PaneI on

Weather Modification of NAS.
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Dr. Patrick Squires, b. Melbourne, Australia, July 12, 14; Meteorology.

B.A., Melbourne, 33, M.A. 35, D. Sc. {Meteorology}, 59. Research

Meteorologist, Australian Weather Bureau, 37-46; Commonwealth Sci.

and Indust. Res. Orgn., Australia, 46-62; Nat. Center Atmospheric

Research 62-66; Dir. Lab. Atmospheric Physics, Desert Res. Inst.,

Univ Nevada, 66-, American Meteorology Society Cloud Physics.

Dr. Helmut K. Weickmann, b. Munich, Germany, Mar. I0, 15; U.S. Citizen;

Atmospheric Physics, Meteorology. Leipzig, 34-36; Ph. D. {Geophysics},

Frankfurt, 39. Flight Meteorologist, German Flight Inst., 39-45; Dir.,

High Altitude Observatory, German Weather Service, 45-49; Physicist,

Atmospheric Physics Br. , U.S. Army Electronics Command, 49-61,

Chief, 61-65; Dir., Atmospheric Physics and Chem. Lab., Environ-

mental Sci. Serv. Admin., 65-, Co-ed, J. Atmospheric Sci., Mere.,

Int. Union Geod. and Geophys. Tech. Achievement Award, Signal Corps,

U.S. Army, 61, Cert. of Achievement, Electronics Command, 62,

American Meteorology Soc. ; Geophys. Union; Int. Asn. Meteorol. and

Atmospheric Physics. Meteorological Research; Cloud and Weather

Modification; Geophysics.
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APPENDIX B - NASA/MDAC SENIOR SCIENTIFIC BOARD STUDY MATERIAL

The following material was prepared and given to the Senior Scientific

Board a couple of weeks prior to their February 3-4, 1972 meeting. This

condensed information concerning the submitted zero-gravity cloud physics

experiment was used as the basis for experiment discussions, analysis

and evaluations.
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NASA SCIENTIFIC BOARD STUDY MATERIAL
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General Information

On the following pages are included several types of information.

A. Condensation of experimental advantages:

This serves as a rough idea of the advantages concerning zero gravity

given by those who have suggested cloud physics experiments.

B. Zero-Gravity Relevance:

A brief example of an earth laboratory restriction that may be resolved

under zero gravity conditions.

C. Classification - Zero-Gravity Cloud Physics Experiments:

Experiments are listed by phenomena versus basic phase of material of

interest (liquid, ice).

No optimization has been attempted at this time concerning overlaps in

this classification (e.g. break-up of droplets and ice is also involved

in charge separation).

The arrangement and associated numbers (indicating number of individual
contributions for that experiment) tn the chart serve to summarize the
range of response and areas of greatest interest.

D. Experiment Suggestions:

This is a very rough listing of suggestions according to material
(liquid, ice, etc.). Overlap has not been eliminated in such items as
diffusion growth rate and accommodation coefficient determinations.

E. Experiment Description:

This listing is by phenomena and in general is not a true procedure

description. It is more along the line of general statements of possible

information one might want to obtain concerning a given phenomenon.

F. Problem Analysis:

This is a very brief outline of general problem area breakdown. Much

more detailed breakdowns in each area have been prepare_ and certain

problems are now being investigated.

All of this information is tentative and is presented to serve as a basis
for further discussion and analysis tn connection with possible cloud
phystcs experiments on a zero-gravity platform.
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Supplement A

CONDENSATION OF EXPERIMENTAL ADVANTAGES
FOR CLOUD PHYSICS EXPERIHENTS
UNDER ZERO GRAVITY CONDITIONS

AS GIVEN BY
EXPERIMENT SUGGESTORS

ao Elimination of mechanical supports of material under investigation which

result in the elimination of:

a. thermal conduction through supports

b. mechanical obstruction to heat and mass transport

c. surface modification or contamination or fluid interface

d. electrical conduction through supports

e. optical interference of supports

f. mechanical damping of supports.

B. Separation of gravity from other forces of interest by eliminating:

C.

a. convection

b. settling or fallout
c. relative motion between particles

thus providing better observation of:

a. electrical forces

b. diffusiophoresis (motion due to vapor flow)

c. thermophoresis (motion due to temperature differences)
d. Brownian motion.

The above results permit extended observation times so that gravity inde-

pendent processes can be observed under conditions that more nearly

approximates natural atmospheric conditions and times.
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C

Growth

Nucleati o_a

S__cavenoi n9

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS

- A, Classification -

Diffus ion

(Condens ation

Evapora tion )

Coalescence

(aggregation

riming )

_rea_,-up

(Liq. osc.
Freeze-shatter

Crystal I_reak-up

A

1

Liq_uid

5

2

L_iqui d-i ce

lo t 1

8

I

3
Ice

i
i

i

1 i 7 1

4
Nuclei

6

I (G)

iiO,,;O9_2n c ous D 1 _ ;

Inh o,_;ogeneous
(Sources and
characte ris ti cs
including memory

5
Gas

G

Co._ ; n_ ._I_"--..L__""

Liquid E (Nuclei) _ 3

FI ce

(subIin_ti on

cond- freeze

Bulk

surface contact)

8

G ' 4 i 6 !(A) : (A)

H _ (C) : 3 ' l
i

I l 2

Charge Sep,arati on

.Optical

Photo Chemical

Ab & Adsorption

Other

J

, i

A

• 3 L
I . , j I
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D.l

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS

- Suggestions -

State of Substance Investigated: L_quld(I)

Growth:

(A.l)

(B.I)

(C.I)

Diffusion

(Condensation
Evaporation)

Coalescence

(aggregation
riming)

Break-up

a)

b)

c)

d)

e)

a)

b)

c)

d)

e)

a)

Determine the effect of surface curvature on the

heat of mass transfer from an isothermal sphere

Measurement of condensation and thermal accom-
mdatlon coefficients of water droplet g_------E_
_)nettcs

Obtain the ventilation coefficient for movlng,

evaporating droplets by the measurement of the

non-ventllated evaporation rate and comparing
results with ventilated data.

Experimental verification of the theoretical

saturation vapor pressure over supercooled water
(droplets of various size)

Pure dlffuslonal growth in various electric

fields (e.g., DC, at various strengths, AC at
var--arTousstrengths and frequencies.)

Scaled down acceleration: collision and coalescence

experiments

Surface impurities effect on coalescence

Environmental 9as effects on coalescence
(including pure water vapor)

Turbulence (or sound waves) on coalescence

Charge and electric fields (DC, AC, etc.) -
collision and coalescence

Study of large droplet oscillations with particular
e_hasis on type of break-up (above critical

amplitude) as a function of drop size and surface

tension. (Study collision of oscillating drops)

(G.l) Scavenging a) Study of magnitudes and relative importances

of Thermophoretic, diffusiopheretic, electrical,

brownian motion and inertial capture (mainly-
first three).
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D.2

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS (cont.)

- Suggestions -

Growth

(A.2) Diffusion a)

(Condensation

Evaporation)

State of Substance Investigated: Liquid-lce (2)

Evaporation studies of ice or liquids in a high

vacuum, possibly leading to some estimate of the
accommodation coefficients.

b) Rates of growth in populations of nuclei, drops
or ice crystals and mixtures of these; differential

growth rates (various concentrations), thresholds

of nucleation, evolution of cloud droplet/crystal

size spectra.

(B.2) Coalescence a)

(aggregation

riming)

Measurement of collision and coalescence due to

electrical fields and charqes on droplets and
ice crystals.

(C.2) Break-up a) Freezing-splintering or shattering studies:
number of pieces and sizes versus:

I. Single droplets

2. Clouds - study of ice phase propagation
(various concentration)

3. Various surface forces (sound, etc., electric

field)

4. Impurities in ambient gas and in and on

surface of droplet

b) Blow-out from evaporation of salt solution

(D.2) Homogeneous a)
Nucleation

(F.2) Ice

Inhomogeneous

To investigate the functional relationship between

the degree of supercooling, time of exposure and

radius of the uncontaminated water droplets.

a) Seeding individual drops (delay time?)
I. length of time at constant temperature to freeze.

2. shattering if present

b) Contact nucleation vs. bulk nucleation and

sublimation (some indications that particles

below O.Ol microns are active)

I. Various ambient conditions

2. Size and type of nuclei (Agl, Pbl, Cdl, etc.,
silicates, carbonates, etc., typical of earth's

surface).

3. Brownian (scavenging) contact nucleation
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D.3

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS (cont.)

- Suggestions -

State of Substance

Investigated: Liquid-lce (_i_

no

o

Ice phase propagation (nuclei scavenging)

(include indirect effects as nuclear radiation.)

Nucleation (multiplication and propagation?) with
and without electric fields.

Scavenging (G.2) a)

b)

Use of the freezing process to study the Facey effect,

Brownian capture, thermophoresis, diffusiophores is,
electric fields, etc.

The above items relative to the liquid and ice phase

scavenglng.

Charge Separation (H.2)

(Optical) (1.2)

(Remote Sensing)

Evaluation of the charge separation processes

a) Crystal growth and drop freezin_

b) Charge separation upon freezing and splinterinq

c) Measure possible localized domains of charge on a

neutral unshattered droplet.

d) Measure the role of the workman electrical double

layer in the charge separation process.

a) Optical properties (e.g. polarization and albedo);

in particular, the way in which these quantities

might be influenced by local sources of pollution.

67



D.4

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS (cont.)

- Suggestions -

State of Substance

Investigated: Ice (3)

Growth

(A.3) Diffusion

(B.3) Aggregation

riming

(C.3) Break-up

Charge Separation(H.3)

_tlcal (1.3)

a)

b)

Determination of the contribution of pure diffusion

(no ventilation) on the growth rate and growth

mode of ice crystals at different temperatures

and vapor gradients.

Electric field effects (AC, DC) on the diffusion

growth

c) Measure deposition and thermal accommodation
coefficients

a) Ice crystal collisions -

including effects of temp, charge, field intensity

and riming or coalescence efficiency of collection
kernels.

a) Determining whether melting snowflakes break-up

A)

a)

Study charge separation (and ion diffusion rates)

by such things as suspending a single crystal in a

temperature gradient and measure rate and amount

of charge separation.

Measure the polarization and scattering coefficient

of ice crystals.
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D.5

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS (cont.)

- Suggestions -

State of Substance

Investigated Nuclei ('4)

(D.4) Diffusion

Growth

Nucleation

(E.4) Liquid

(F.4) Ice

Adsorption (K.4)

a) Droplet size distributions of unseeded and

hygroscopically seeded fogs. (Emphasis on

giant salt nuclei (diam > 54). (as related to

warm cloud seeding)

b)

c)

a)

b)

a)

b)

c)

d)

a)

Accommodation coefficients in early stages of

growth as a function of

I. environmental conditions; T, P, RH, and trace

gases
2. condition of nuclei: surface impurities

Study of growth of particulates used to investi-

gate the nucleation behavior of both liquid and

solid phases.

Study of condensation numbers, rates and

properties under very low supersaturations

(<O.l percent)

Memory effect of cloud condensation nuclei.

Memory effect (capillarity vs adsorption)

Activation time delay of hydrophobic particles
- why activated, comparison measured vs theoretical
numbers and size distributions.

Nucleation properties of soluble and insoluble
(also hydrophobic) nuclei (>l micron).

Contact nucleation vs bulk nucleation

Study of temperature related effects of adsorption

(as absorption) of gases onto nuclei
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D.6

General :

ZERO GRAVITY CLOUD PHYSICS EXPERIMENTS (cont.)

- Suggestions -

State of Substance

Investigated: General

(L)

(L.4)

Electrical

ION Production

a)

b)

c)

a)

Electric m_obilities of small and large particles
(ions to hail stones)

Investigation of the influence of space charges

on flow dynamics of air. In particular, the

influence on viscous losses and gravity waves
can be studied.

Corona emission from ice crystals.

Measure air conductivity and relaxation times

at compositions in a spacecraft environment.
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ID No. A

EXPERIMENT DESCRIPTION

Phenomenon: Growth (diffusion)

PURPOSE:

Study the contribution of diffusion to various growth processes in the absence

of gravity and thermally induced convection and ventilation.

DESIRABILITY

a. Elimination of free convection.

b. No thermal conduction through mechanical supports.
c. No fall-out or relative motions.

d. No extraneous surface effects as capillary and impurities due to contact
with mechanical supports.

e. Long usable observation times.

DESCRIPTION:

a. Observation of single liquid or ice particles.

b. Observation of populations of nuclei, droplets or crystals and combinations
of them - relative competition.

c. Ice and water thermal diffusion chambers for low supersaturations.

d. Provisions for various electric field configurations.

SPECIAL REQUIREMENTS:

a. Cancellation of motion due to net charge or non-uniform electric field for

some experiments.
b. Vacuum (space about lO"/ mmHg available).

c. Mass of crystal versus time.

d. Rapid response R.H. probe (<5 sec.).

COMMENTS:
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|U No, B Eo2

_XPLRIM_NT UES_R|PTIOII

Phenomenon: Growth (coalescence, rimtng)

PURPOSE:

Studies of various factors involved with collision, coalescence and riming under
conditions which separates o_t the inertial factor due to gravity (electric

fields, turbulence, low (lO'_g) acceleration observations.

UESIRAUILITY

a. Separation of gravitational forces from other forces (electrical, etc.).

b. Longer observation times.

c. Scaled (reduced Re) permittlng realistic preservation of Re number before

and durin_ collision.
d. Low (<I0" g) acceleration permits better observation of collision.

IJESC_RIPTI_N:

a. Use of unsaturated, saturated and supersaturated environments.

b. Variables: surface and bulk impurities

environmental gas (including pure water vapor)

charge or electric fleld (AC, DC, uniform, nonuniform)
turbulence (sound, other)

c. Distribution of cloud drops or ice with and without electric field versus time.

SPEC |AL RLqU | REMENT_I

a. Position and charg_ contrpl on particles.
b. Provide known (lO-_to lO-u g) acceleration + IO% for 40 to l,O00 sec.
c. AC-DC fields.

d. Measurement of residual net charge distribution on droplets and crystals.

COMMENTS:
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ID No. C

EXPERIMENT DESCRIPTION

Phenomenon: Break-up

PURPOSE:

Studies of various mechanisms contributing to particle multiolication (liquid,
ice, nuclei, etc.).

DESIRABILITY

FOR ZERO-G:

a. No mechanical support necessary (heat, vapor transport unmodified).
b. Controlled turbulence factor available.

c. _o fallout, permits time to observe very small splinters (by diffusion growth
if necessary)if they exist.

DESCRIPTION:

a. Oscillation with collision breakup - fragment size distribution function of
surface tension.

b. Blow-out due to evaporation of saturated salt solution.

c. Break-upofmelting snow flakes.

d. Nucleation of individual droplets - measure number of splinter particles (let

grow to larger size if necessary) as function of ambient conditions and

droplet size.

e. Propagation of ice phase due to break-up during freezing process.

f. Holographic observation.

SPECIAL REQUIREMENTS:

a. Electric field stresses, sound fields.
b. Electric and sound fields used for motion.

c. Possibly low gas pressures (down to pure water vapor) to amplify splintering
propagation ana observation.

COHMENTS:

73



llJ No, .._D

EXPLRZM N_T_U  CRIPU N

Pt enomenon:Nuc l ea t t_on _o_no_en eous )

PURPOSe:

Studies of the functional relationship between the degree of supercooling, ttme of
exposure and radius of the uncontaminated water drops.

E.4

DESIRABILITY

a. Eliminates contamination arising from methods of suspension.
b. Permits observation time wtth sufficiently realistic low cooling rates.

UESCRIPTION:

a. 0.3 meter cube chan_er.

b. Honodtspersed or polydtspersed droplets ('100, a few micron to few mm diameter).
c. Cool chamber slowly.
d. Observe nunt_er frozen versus size, temperature, time.

 PECIAk  QUlR M NtSj
a. Possibly a two dimensional lay ot: droplets for ease of observation.
b. No icing on wall permitted.

cO ENT=S:
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IU NO. E

&XPkRIMENT U[_CR|PT|UN

Phenomenon: l_¢leation

Inhomogeneous Liquid

PURPOSE:

Studies of condensation nuclei properties under low supersaturation conditions
(including memory).

E.S

OESIRADILITV
UO!F'ZU_Iy'_-..
a. No mechanical supports that might contribute to the memory effect (capillary

effects between particles and support surface).

b. No gravity induced convection - extended observation time for more realistic
supersaturation conditions.

c. No fallout, giving total counts of activated nuclei.
d. Controlled alrmotion could be used.

_EsC_R!PTI ON:
a. Themal diffusion chamber.

b. Reactivation of nuclei to measure memory effect.
c. Use low supersaturattons (below 0.2%).
d. Study role of giant nuclei (>I micron) by condensation and competition in a

cloud of droplets.

SPECIAL REQUIREMENTS;

co_E.Ts:
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E.6

ID No.

EXPERIMENT DESCRIPTION

Phenomenon: Nucleation
Inhomogeneous-tce

PURPOSE: Studies of various properties and freezing modes of freezing nuclei

including memory effects (capillary versus adsorption)

DESIRABILITY
a.

b.

C.

d.

No physical supports to give capillary conditions.
No fall out - extended observation time.

No convection - stationary particles.

Nearer natural supersaturations for extended times are

possible.

DESCRIPTION: a. Observe freezing due to various modes: (silicates, carbonates,

Agl, Pbl, Cal) contact, bulk, sublimation

due to various forces:

electrical, br_wnlan motion, nuclear radiation and

various phoretlc forces

due to various types:

silicates, carbonates, AgI, Pbl, Cdl (hydrophollc, soluble

insoluble).
b. Freezing during equilibrium, growth, evaporation.

c. Nucleation by <O.Ol micron particles.
d. Reactivation under various conditions - memory effect.

e. Possible measurement of activation time lag.

f. Possible splintering - numbers and sizes.

SPECIAL REQUIREMENTS:

COMMENTS:
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ID ;to.

EXPERIMENT DESCRIPTION

G

Phenomenor:: Scavenqing

E.7

PURPOSE:

Studies of the relative importance of various possible scavenging mechanisms in relation

to natural earth atmospheric processes. (Brownian motion, thermophoresis, diffusio-

phoresis and electrical) by the liquid and ice phases.

DFSI[_:!!. ITY
r-,- .

a. No suspension mechanism to modify heat or vapor flow.

b. No fall-out or other gravity induced relative motion.

c. Extended observation times available.

DESCRIPTION:

a. Attachment of particles O.Ol micron to l.O micron to liquid and ice.

b. Use two chawbers - fill both same - activate one - collect activated particles -

activate both - compare activities.
c. Use of relative freezing characteristics during evaporation, equilibrium and con-

densation to determine relative importance of diffusiophoresis and thermophoresis.

SPECIAL REQUIREMENTS:

a. Removal of droplets without disturbing remaining smoke or other particles.

" COMMENTS:
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E.8
ID No. __

EXPERII,iEtCTDESCRIPTION

Phenomenon: ___hr___,S_llJLto/)

PURPOSE:

Studies of various possible charge separation mechanisms and their relative importance

to electrical properties of natural clouds.

DESIRABILITY

a. No electrically conductive supports.

b. No gravitational settling.

DESCR] P1 IOl(:

a. Cloud chamber wlth high voltage plates.

b. Freezing of droplets, melting of crystals in electric fields.
c. Stripping of the water electric double layer by various means (surfactents, etc.).

d. Study electircal ion diffusion rates in ice-liquid particles.

SPECIAL REQUIREMENTS:

a. Remote measurement of charge and charge separation.

COMMENTS:
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ID No.

EXPERIMENT DESCRIPT !O_,_

Phenomenon: Optical

E.g

PUI<I,()SE:

Studies of the optical properties of liquid and ice phases (particularly - polarization

and scattering coefficients of complex ice shapes).

")ES I F,AS .TI. ilY

a. No optically scattering mechanical support.
b. No relative motion during measurements.

DZ3CIII}IION:

a. Scattering produced by clouds of drop and/or ice.

b. Observe (change in light scattering properties) number of frozen versus size,

temperature and time as droplets are frozen.

c. Scattering properties of individual particles.

SPECIAL REQUI_EI_ENTS:

a. Possibly a two dimensional layer of droplets for ease of observation.

. COMt4ENTS:
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ID No.

EXPERINENT DESCRIPTION

L

Phenomenor_: General

E.IO

PURPOSE: Low production and electrical conductivity of spacecraft environment.

Also electrical mobility of ions to hall stones under various
environmental conditions.

OESI_A_ILITY Eliminates gravity induced motion, permits evaluation of electric
I_-C]T_-_T_G-- field forces.

DESCRIPTIO:C: a. Measure large particle mobility with maximum electric fields

strengths that are thought to occur in electrical storms.

b. Measure background ionization rate and ion accumulation levels

(important relative to electrical cloud physics experiments).

Co Measure space charge influence on viscous losses and on gravity

waves (use of small wind tunnel with pressure transducers and

space charge generators).

SPECIAL REQUIREMENTS:

COMMENTS:
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PROBLEM ANALYSIS

F

SYSTEMS

CHAMBERS

GENERATION

ENVIRONMENTAL

CONTROLS

MOTION CONTROL

CHARGE CONTROL

COMBINATION AND

MODIFICATION

CONTROL

OBSERVATIONS

SPACECRAFT

ACCOMMODATION

MISCELLANEOUS

COMPONENTS

(Partial List)

Diffusion

Expansion

General Purpose

Droplets, Ice Crystals,
lluclei

Temperature
Pressure

Dew Point Temp.
E1ectrlc Field

Composition

Electric Fields

Air Jets

Photon Forces

Laminar Air Flow

Miscellaneous

Charging
Neutralization

Background Radiation

Mixing Systems
Droplet Coatings

Vtsual
Photographic
Mtcros copi c
Raman Spectroscopy
Laser Holography
Lidar

Cabin Environment

Waste Heat Disposal
G Levels

New Technologies

*e.

,,,,f,

_g.

h.

The relationship of each component to the

five parameter states; liquid, liquid-ice,

ice, particles and gases, is considered a

separate problem during the initial analysis.

The development of the concepts leading to

a preliminary design for the zero-gravity

cloud physics chamber is an iterative process
as follows:

a. Theoretical development and calculations

for each line item in the component-

parameter phase.

b. System concepts for solution of component-

parameter problem.

c. Selection of concept for component-

parameter solution.

*d. Selection study of components within each

system.

Compatabtltty study of components
within each system.

System analysis for compatabiltty.

System - spacecraft accomodation studies.

Total laboratory concepts.

*Problems at this point may require restart

at point b or c.

**Problems at this point may require restart

at point d or e.
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APPENDIX C - "CARRY-ON" EXPERIMENTS

This appendix includes five examples of cloud physics laboratory type

experiments which were submitted to a MDAC/Skylab evaluation team for

vehicle compatability analyses. Two of the experiments contain two parts.

The coalescence experiment also includes a droplet dynamics (e.g., oscillation

break up) experiment and tile splintering of freezing water droplets includes

the special case of NaCI break up during salt water evaporation.

A summary sheet is included which ranks the proposed experiments with respect

to scientific need, equipment complexity and astronaut involvement.

The first two pages of each experiment deal with Skylab constraints. Also

indicated is the utilization of available Skylab facilities such as the M512

manufacturing chamber. A brief procedure description for each experiment

has been added to the initial forms. These descriptions were very preliminary

and included minimal engineering evaluation. The descriptions are to be used

only as a basis for further experiment concept development.

Experiments can be found on following pages:

Experiment A

Experiment B

Experiment C

Experiment D

Experiment E

Coalescence & Dynamics

Evaporati on

Splintering (& NaCl}

Saturation

Circulation

Page 85

Page 91

Page 98

Page 105

Page 110
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Experiment

ZERO-GPJ_VITY CLOUD PHYSICS CARRY-O;_ EXPERIMEI_T

SU_Ir,IARY

Astronaut

Invo Ivef,_ent
Equipment

C_nplexity

*Scienti fi c

Importance

**Special Req.
and Cmqments

A. Coalescence 2 3 2 work bench

(& Dynamics )

b. Evaporation l l l Kfr. cilamber

C. Spl interinq 3 4 l refrigerator,

(& NaCl) vacuum

D. Saturation 2 2 l refrigerator,
vacuum

E. Circulation 4 5 3 none

*All of these areas are important, but the timing on whicil ones should be done

first is indicated by the numbers. These rankings apply only relative to the

simple carry-on type of experiment.

**The first four itBas becol}_ easier to _erform in proportion to the reduction_of
the acceleration level. Levels of I0 -_ can be used but values less than I0 -_

during experiments would be desirable.

The initial contributors of the above experiments to the zero-gravity cloud

physics program are listed below. Organization affiliations of these contribu-

tors are listed in Table 2.

A. Dr. J. W. Telford {coalescence}, Dr. D. C. Blanchard (drop dynamics)

B. Dr. John Hallett

C. Professor H. R. Byers

b. Dr. T. E. Hoffer

E. Dean C. L. Hosler
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CLOUD PHYSICS CARRY-ON EXPERIMENTS

The following can be imple_lented as pre-Shuttle experiments.

Experiment

a. Collision processes: single water droplets (mm size) colliding
with a plane water surface. Use optical interference patterns to
observe the collision-coalescence process during the last fraction
of a millimeter before and during collision. Movie camera data
recording. Included here would also be droplet dynamics and
droplet breakup. The final collision and coalescence process is
important in warm cloud precipitation processes as also is the
droplet breakup mechanism.

B. Evaporation: evaporation of ice or water in a vacuum (free
floating). Photograph rate of evaporation. EVA or vacuum
chamber. Important in the physics (accommodation coefficients)
of ice and water precipitation processes in clouds.

C. Splintering: freeze water droplet and count number of fragments
caused by splintering. This ice nuclei "multiplication" process
is very important in cold precipitation processes and is relevant
to weather modification procedures. This would be carried out in
a cooled box between 0 and -40°C. Control of temp. pressure and
humidity. Along these same lines but with only humidity control,
salt (NaCl) droplets could be evaporated to determine if the
NaCl crystal fragments into several parts (i.e., "multiply")
or remains in a single crystal.

D. Saturation: Vapor pressure over supercooled water. This value
has not been measured experimentally but is extrapolated from
above freezing vapor pressures. This quantity provides the
driving force for vapor between liquid water and ice in a below
freezing cloud. A chamber with silicone coated walls and droplet
of pure water at its center. Evacuate chamber of all air and then
let vapor pressure build to equilibrium and measure. Do for
temperatures from +20oc to -40Oc.

E. Circulation: Three-dimensional atmospheric circulation could be
studied by the use of a fluid covered sphere. Two-dimensional
rotating "dish pan" experiments are being done at the present to
study the on set of atmospheric Rosby waves.
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SKYLAB CONSTRAINTS AND

INFORMATION REQUIRED FOR SCREENING

PROPOSED SECOND SKYLAB SUITCASE EXPERIMENTS

Experiment
Title: Coalescence Processes of Liquid (Water) Droplets (also droplet

dynamics)

A. Hard Physical Constraints: (Skylab requirements in brackets; please record
this experiments requirements)

*I. Size and Geometry: (s30" x 40" x any reasonable length)
(I - Stowage Ring Container) Basic part 1 ft cube

*2. Weight: (s150 pounds, including container)
<45 Ibs (=150 with items c)

3. Power: (28 v.d.c., slO00 watts (s500 watts preferred)

How much? 200 watts Duration? 30 minutes

4. Toxicity: (No toxic _terials permitted)
Water

So Temperature Range/Control:
Ambient

(55 o to 92o F range)
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6. When Available? (Launch ready by mid 1975)
1974-I 975

B. Priority Criteria

l • Benefits: (Why is experiment important, and to whom?) Major item in

warm precipitation processes. Important to Atmospheric Physics &
Weather Modification.

**2. Is There a Champion?
NASA-MDAC (Zero-Gravity Cloud Physics) Senior Scientific Board

***3. Complexity: (How simple to set up, operate? How straight forward is

final analysis?)

Simple latch assembly, check list operation, simple manual adjustment
of droplet position and velocity.

4. Time Requirements:

e Total

e Astronaut's

• Port, Airlock? NA

m Event Criticality?

30 minutes operating (minimum)

Non-critical

o Unique Skylab Facilities Interface?

Work bench if available (see C)

(Airlock, Mfg. chamber, cooling

system, etc.)
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. Data Recording: (Quantity? Analog? Digital? Film, other)

Film: 5 rolls movie; Verbal and/or written description of events plus
ambient T, P, R, H, if available.

. Other Special Requirements: (EVA? Scientist Astronaut? slO-4g?

Orbital? etc.)

_lO-3g for one minute or less during actual coalescence event.

8. Payload Return Requirements: (wt. and vol.) 5 rolls of film + taped
events.

C. General Purpose Workbench/Equipment: Would a workbench be beneficial to
the astronaut in performing the experiment? What ancilliary equipment/

tools does the experiment require that may be common to other suitcase
experiments and, if provided by the workbench, could be shared? (e.g.,

voltmeter, optical bench, digital tape recorder, A-D converter, micro-

scope, movie camera, d.c./a.c, converter, heater, etc.)

Light Source (laser if available)

Bench area to mount equipment

Cameras (2) (Possibly (?) one high speed >l,O00 fps and one movie)

D. Space for Continued Comments:

*Items C could be supplied in a single stowage ring container with basic

experiment if not available separately.

**This experiment is a part of the zero-gravity cloud physics program study

and committments have been made to maintain suggestor's names with each

experiment. These individuals are represented by the stated Board.

***The basic requirements are fairly simple, bench mounting could be used but

free floating may permit -ower gravity (acceleration) values.

The droplet generator would be adjusted so that droplets strike the second
surface at different velocities and possibly for several angles based on

astronaut observations.

87



Coalescence-Liquid

Collision and coalescence of liquid droplets is the method whereby warm cloud

droplets greater than 20 microns grow to precipitation sizes above lO0 microns.

Gravity is a first-order influence in the collision processes. The collision

processes have been studied from many approaches including free fall and wind

tunnel studies. The quantity of interest here is the coalescence efficiency.

Even though two droplets collide, they may not coalesce. Theoretical fluid

dynamic considerations break-down when the droplets approach a separation on

the order of the mean free path length of air molecules. It is what happens

to this thin film of air and water vapor between two approaching droplets

and the initial coalescence process that is of prime importance. Normal

collision events in terrestrial laboratories happen rapidly, making close

detailed observations of the collision and coalescence processes extremely

difficult or impossible.

Low or zero gravity conditions would permit the collision and coalescence

process to be observed in "slow-motion." The approach velocity could be

regulated without the use of mechanical supports.

A droplet could be fired toward a water surface and high speed camera would

record interference patterns produced by the two liquid surfaces when their

approach is within a few wavelengths of light (a few microns). A second

camera would record approach velocity and position and gross distortion during

collision.

The full system could be free floating during a given sequence of pictures to

minimize accelerations due to crew motion. A plastic or equivalent enclosure

may be used around the droplet path to minimize effects due to air movement

from laboratory air conditioning units.
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Equipment:

• Fluid surface (flat or curved).

• Cameras and optical systems.

• Droplet projection and source.

• Controls for T, P, R.H.

Procedure:

we Prepare flat or curved water surface (e.g., new fluid?).

• Establish T, P, R.H.

• Adjust distance between droplet source and fluid surface to obtain

desired impact velocity.

• Project droplet toward fluid surface.

• Photograph interference pattern during impact.

• Photograph impact distortion from side.

--*m Repeat for various conditions.

*Approaches :

• Double pulse holography interferometry could possibly be used.

• If a curved fluid surface is used, vary impact parameter also.

General :

Impact velocities of lO-2 cm/sec and larger (lO3 cm/sec max).

Atmospheric pressure from vacuum to one atmosphere.

Several fluids with various surface tension, vapor pressure and

viscosities could be used to better establish theory.
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Carry-on Version:

Basic procedure and equipment would be as given above.

The only change would be that ambient conditions of T, P, and R.H. would be

used and measured.
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Experiment
Title:

ao

SKYLAB CONSTRAINTS AND

INFORMATION REQUIRED FOR SCREENING

PROPOSED SECOND SKYLAB SUITCASE EXPERIMENTS

Evaporation of ice and water in a vacuum (accommodation coefficients)

Hard Physical Constraints: (Skylab requirements in brackets; please record
this experiments requirements)

l ° Size and Geometry: (s30" x 40" x any reasonable length)
<I/2 cubic ft - fluid supplies & dispensers

. _Weight: (_<150 pounds, including container)
_<30 I bs

3. Power: (28 v.d.c.,<lO00 watts (-<500 watts preferred)

How much? 150 Duration? 5-10 minute periods

. Toxicity: (No toxic materials permitted)
Water - ice

*5. Temperature Range/Control:
Ambient

(55o to 920 F range)
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° When Available? (Launch ready by mid 1975)
1973

B° Priority Criteria

, Benefits: (Why is experiment important, and to whom?) Provide basic

information concerning diffusion accommodation coefficients as related

to atmospheric physics and weather modification.

**2. Is There a Champion?
NASA-MDAC: Zero Gravity Cloud Physics, Senior Scientific Board

, Complexity: (How simple to set up, operate? How straight forward
is final analysis?)

Injection of a water droplet or ice crystal into manufacturing space

chamber. Photograph with time lapse camera.

. Time Requirements:

• Total

m Astronaut's

e Port, Airlock?

• Event Criticality?

up to one hour.

Vacuum line to manufacturing space chamber.

Non-critical

_5. Unique Skylab Facilities Interface? (Airlock, Mfg. chamber, cooling
system, etc.)

Use of mfg. chamber - no modification. Cooling could be used if

available but not necessary in initial experiments.
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° Data Recording: (Quantity? Analog? Digital? Film, other)

Film, astronaut's comments & notes, post-flight debriefing.

_7. Other Special Requirements: (EVA? Scientist Astronaut? lO-4g?

Orbital? etc.)

As low g as possible so that droplet or ice stays near center of
chamber.

8_ Payload Return Requirements: (wt. and vol.) 3 rolls of film &
recorded

C_ General Purpose Workbench/Equipment: Would a workbench be beneficial to

the astronaut in performing the experiment? What ancilliary equipment/
tools does the experiment require that may be common to other suitcase

experiments and, if provided by the workbench, could be shared? (e.g.,

voltmeter, optical bench, digital tape recorder, A-D converter, micro-

scope, movie camera, d.c./a.c, converter, heater, etc.)

1. Light source (for camera)

2. time lapse camera (movie - slow framing)
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D. Space for Continued Comments:

*Item A.5, cooling could be used down to -40°F but would not be necessary

for initial experiments.

**This experiment is a part of the zero-gravity cloud physics program study

and committments have been made to maintain suggestor's names with each

experiment. These individuals are represented by the stated Board.

***A free floating chamber less than l ft on a side could be used in connec-

tion with the vacuum lines from the lower body negative pressure device in

place of the space manufacturing chamber.
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Accommodation Coefficients

When a water molecule strikes a surface (liquid or solid) the molecule may or

may not "stick" (remain on) to the surface. The accommodation coefficients

are a measure of this adherence efficiencies. For non-growth conditions, as

many molecules leave the surface as come into the surface. Under conditions of

condensation, there is a flux of water molecules to the surface. The surface

properties (e.g., type of material, surface energies, curvature) play important

roles in this diffusional growth. The region of growth from nuclei (O.Ol to

Ipm) diameters to few micron cloud droplets or crystals are of particular

interest. In this area of research, gravity is incidental and only enters the

laboratory through experimental difficulties resulting from convection or

fallout.

Laboratory measurements of initial particle size distribution from diffusional

growth using supersaturations above 0.3 percent indicate a monodispersed cloud

of particles, fairly independent of particle characteristics. These results

are in contradiction with the polydispersed measurements observed in natural

clouds. A polydispersed distribution is necessary to initiate the important

coalescence processes which result in precipitation.

The quantity of interest here is the initial diffusion growth rates under very

low supersaturations (<O.l percent). A comparison of actual growth rates with

theory would provide the accommodation coefficients.

Equipment:

• 30 cm cube chamber (expansion).

• Controls for temperature (T), air pressure (p) and water vapor

pressure (Pw), particle injection.

• Camera and/or holographic systems.
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Procedure:

--e

*•

Purge chamber.

Establish initial conditions (TO , Po' Pwo )"

Inject particles to be studied

Expansion to obtain desired final conditions

(TF' PF' Pwf )

*• Observe size and shape versus time. (variable)

(60 sec)

(120 sec)

(15 sec)

(30 sec)

--e Recycle with same or new conditions (T, P, Pw' particle type).

*Approaches:

e Condensation nuclei growth studies.

-- Pwf <1% supersaturation, TF>O. (final values)

-- Growth rate at 0.05% supersaturation: O.l_m to l_m in l sec.

(thus lO-3 to lO -2 sec resolution time in initial seconds)

-- Monodispersed cloud or individual particles

-- Analog record Mie scattering during O.l to 2 m diameter growth.

-- Holographic recording may supply the same scatter information.

• Droplet or ice greater than a few microns

-- Holography for volume recording of size distribution.

-- Interferometry (including holographic) to record changes in size.

General Comments:

• Growth rates of a few microns/sec.

e Special conditions might be larger but usually a factor of ten less.
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Carry-on version:

An initial experiment would involve the evaporation of a liquid or ice particle

in vacuum.

---e Purge and evacuate chamber.

• Inject water droplet(s) to ice crystal(s).

• Maintain vacuumas particle evaporates.

• Photographically record size versus time.

--o Recycle for sameor, if available, other conditions.

• Data reduction consists of dimension measurementsversus time from

the photographs--to be done in a terrestrial laboratory.

Possible alternatives (separate or in appropriate combinations)

Ejection of crystals into space outside space vehicle.

Photograph sizes versus time.

Small 30 cm cube chamberusing a vacuumline.

Free float chamberand camera to minimize residual acceleration.
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SKYLAB CONSTRAINTS AND

INFORMATION REQUIRED FOR SCREENING

PROPOSED SECOND SKYLAB SUITCASE EXPERIMENTS

Experiment
Title: Splintering of freezing water droplets (also NaCl Breakup)

ao Hard Physical Constraints: (Skylab requirements in brackets; please
record this experiments requirements)

o

l • Size and Geometry: (_30" x 40" x any reasonable length)
1 - Stowage Ring Container: 16" x 20" x 28" 1 ft cube chamber plus

control equipment

• Weight: (s150 pounds, including container)
~140

• Power: (28 v.d.c., slO00 watts (s500 watts preferred)

How much? 300 Duration? 1 hour

o Toxicity: (No toxic materials permitted)
Water

o Temperature Range/Control: (55 o to 92 o F range)
-14 to ambient acceptable (-40 to +20 desired)

98



6. When Available? (Launch ready by mid 1975)
1975

B• Priority Criteria

l • Benefits: (Why is experiment important, and to whom?) A factor of

major importance directly related to how much, where, and what is

cloud seeding for weather modification.

**2• Is There a Champion?

NASA-MDAC Senior Scientific Board, Zero-Gravity Cloud Physics Facility

1 Complexity: (How simple to set up, operate? How straight forward is

final analysis?) Fairly self-contained, simple to set-up. Operation

would be check list type but decisions would be required of astronaut

as to when to progress to next step or terminate particular step.

Final analysis would be fairly simple during first experiments, a yes
or no sometimes being sufficient.

. Time Requirements:

• Total

• Astronaut's

• Port, Airlock?

• Event Criticality?

l hour minimum

Non-critical

B. Unique Skylab Facilities Interface? (Airlock, Mfg. chamber, cooling
system, etc.) Use of refrigeration systems. Vacuum line could be
utilized.
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. Data Recording: (Quanity? Analog? Digital? Film, other) Visual

and voice recordings. Photographs of chamber contents (one picture

llO sees), post-flight debriefing.

*7. Other Special Requirements: (EVA? Scientist Astronaut? slO-4g?

Orbital? Minimal g desired.) Particle size can be adjusted over
certain limits to accommodate g levels up to lO-3 but <lO -4 would

be desired.

. Payload Return Requirements: (Wt. and Vol.) Film and written and
taped notes.

C. General Purpose Workbench/Equipment: Would a workbench be beneficial to
the astronaut in performing the experiment? What ancilliary equipment/

tools does the experiment require that may be common to other suitcase

experiments and, if provided by the workbench, could be shared? (e.g.,

voltmeter, optical bench, digital tape recorder, A-D converter, micro-

scope, movie camera, d.c./a.c, converter, heater, etc.)

I. Vacuum line

2. Refrigeration system -14°F or less

D° Space for Continued Comments:

*Chamber could be free floating (with appropriate constraints) to obtain

the lower desirable acceleration values.

**This experiment is a part of the zero-gravity cloud physics program study

and committments have been made to maintain suggestor's names with each

experiment. These individuals are represented by the stated Board.
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Freeze-Splintering

Many natural clouds form precipitation by the cold or ice processes. Due to

the relative abundance condensation nuclei, these clouds are found to have 30

to 500 supercooled droplets (0 to -15°C) per cm3 below 20 microns in diameter.

Radar and aircraft observations have indicated that under certain conditions

these supercooled droplet clouds can turn to ice in a matter of minutes.

Field measurements have shown that the number of special nuclei available

in these clouds which can cause the freezing are too few in number by several

decades to explain this rapid conversion to ice. One proposed explanation to

this rapid ice conversion is that under certain conditions supercooled water

droplets splinter during the freezing. The ice pieces or splinters act as

freezing nuclei and thus multiply. The resulting cascading effect could

produce the observed phenomenon.

Laboratory investigations have indicated splintering but the results still

are a couple of orders of magnitude from being sufficient to explain the natural

process. Gravity induced settling is the major factor which has limited labora-

tory investigations. Although ventilation probably plays a role in this process,

the basic heat and vapor flow around freezing droplets could be meaningfully

studies in a zero-gravity environment.

Equipment:

• Controls of T, P, R, H, and T change rate.

• Camera, holography, visual data recording
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Procedure:

----e Purge chamber.

• Establish initial T, P, R, H.

• Inject liquid droplet(s).

---e Cool chamber at a controlled rate (+5°C to -30°C).

• Note (record-photographic, manual) if any small ice particles have

been produced.

e Observe time of freezing (T, P, R, H).

• Provide humidity and time for any possible small crystals to grow to
detectable sizes.

• Re-establish initial T, P, R, H.

--e Recycle same particles several times.

_e Recycle using same or different conditions.

Approaches:

e Slight supersaturation can be established after freezing to enhance

small crystal growth.

• Expansion chamber (with appropriately cooled walls) could be used to

provide known cooling cycle throughout chamber.

General:

Cooling rates: O.IC/min (I M/sec)
lO.OC/min (I00 M/sec)

Determine effects of CO2 levels.

Vary rates of evaporation and concensation during cooling.

Carry-on Version:

Basic procedure would be as given in general description. Available

refrigerator units could be utilized to provide necessary cooling.

For initial experiments, a temperature step could be used in place of

controlled cooling.
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NaCl Break-up

Con_non salt (NaCI) fro;_lthe ocean is a very important source of large and giant

nuclei. The numbers and sizes of these hygroscopic nuclei exert a large influ-

ence on cloud droplet size distributions and resulting precipitation potentials.

Because NaCl plays such an important role in the precipitation process, an

understanding of the airborne particle size distribution is very important.

Salt particle break-up has been suggested to explain the salt particles pro-

ducing atmospheric haze over the oceans, and the propagation of salt particles

over land. The possible break-up of salt particles also plays a vital role in

the design of brine cooling towers for electricity production as well as what

happens to the salt used to de-ice freeways.

Gravity prevents the terrestrial laboratory observation of this phenomena with-

out physical supports. A zero-gravity condition would permit a study of large

evaporating salt solution droplets.

Equipment:

• T, P, R, H controls.

• Camera and visual records.

Procedure:

____.•

-_.0

Purge chamber.

Establish initial T, P, R, H.

Inject saturated NaCl solution droplet(s).

Adjust R, H to cause evaporation.

Photograph crystallization processes.

Observe time of solidification or crystallization.

Note if multiple particles are formed (number, size).
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Increase humidity so that any small NaCl pieces might grow to
detectable sizes.

When all particles are in solution again recycle processes.

Recycle same or different conditions.

Approaches:

Zero-gravity would permit small and large particles to remain
stationary. High humidity can then be used to determine the number

of particles present without the use of a microscope.

Slight motion or sound waves may be needed to separate pieces if they
are not ejected with an initial motion.

General:

Evaporation rates - adjust R.H. between 0 and 70 percent.

Carry-on Version:

Same basic approach.

evaporation rate.

Use ambient T, P. Use a space vacuum source to maintain
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SKYLAB CONSTRAINTS AND

INFORMATION REQUIRED FOR SCREENING

PROPOSED SECOND SKYLAB SUITCASE EXPERIMENTS

Experiment Title: Saturation vapor pressure over supercooled water.

A. Ward Physical Constraints: (Skylab requirements in brackets; please record
this experiments requirements)

I. Size and Geometry" (s30" x 40" x any reasonable length)

&l ft cube

Q Weight: (s150 pounds, including container)

<50 Ibs. (+autorecording if not done by hand)

o Power: (28 v.d.c., slO00 watts (_500 watts preferred)

How much? <lO0 Duration? l hour

no Toxicity: (No toxic materials permitted)

Water

o Temperature Range/Control:

<-14 to ambient

(-40°F ultimate)

(55o to 920 F range)
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6. When Available? (Launch ready by mid 1975)

1974

B. Priority Criteria

l • Benefits: (Why is experiment important, and to whom?) Primary

importance in the diffusional growth of ice crystal among supercooled

droplets. Presently, data is extrapolated from above 32F data.

**2. Is There a Champion?

NASA-MDAC Senior Scientific Board

. Complexity: (How simple to set up, operate? How straight forward is
final analysis?) Simple to set up (install in refrigerator), check

list operation (set refrigerator temp. in steps) and record chamber

pressure temp.

o Time Requirements:

e Total

e Astronaut's

o Port, Airlock?

e Event Criticality?

l hr. after set-up

. Unique Skylab Facilities Interface? (Airlock, Mfg. chamber, cooling

system, etc.)

Cooling System (refrigerator)

Vacuum line to initially evacuate chamber.
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. Data Recording: (Quantity? Analog? Digital? Film, other) Visual
and written or spoken; Analog if available (Temp, pressure, time)

*7. Other Special Requirements: (EVA?
Orbital? Minimal acceleration).

Scientist Astronaut? -<lO-4g?

8, Payload Return Requirements:
inf. if used.

(Wt. and Vol.) Taped notes and analog

Co General Purpose Workbench/Equipment: Would a workbench be beneficial to

the astronaut in performing the experiment? What ancillary equipment/
tools does the experiment require that may be con:non to other suitcase

experiments and, if provided by the workbench, could be shared? (e.g.,

voltmeter, optical bench, digital tape recorder, A-D converter, micro-

scope, movie camera, d.c./a.c, converter, heater, etc.).

Analog recording or A-D and digital tape
Desired but not necessary

D. Space for Continued Comments:

*The major concern of most cloud physics experiments is the movement of the

substance under investigation to the walls of the chamber. The particle

size can be adjusted over certain ranges to prevent this problem (smaller

sizes move slower) but larger particles are desired in many cases when

ever possible for ease of observation.

In_ number of experiments the chamber can be free floating thus permitting

lO-b g or less for a few minutes at a time.

The refrigerator or space manufacturing chambers do not permit such freedom.

**This experiment is a part of the zero-gravity cloud physics program study and
committments have been made to maintain suggestor's names with each

experiment. These individuals are represented by the stated Board.
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Saturation Vapor Pressure Over Supercooled Water

The controlling factor in the initiation of the cold precipitation process at

a given temperature is the saturation vapor pressure difference between ice

and supercooled water droplets. The few large particles necessary for the

initiation of the collision process are formed by the vapor growth of a few

frozen droplets in a field of many supercooled droplets. This rapid growth

provides particle size differences which then starts the gravity inertial

collision process.

Laboratory measurements of the saturation vapor pressure over supercooled

water is hindered by water freezing induced by surface contact with any material

support. On theoretical grounds, this saturation vapor pressure over super-

cooled water has been calculated and used to four decimal places.

Because of the importance of this vapor pressure, a zero-gravity experiment

has been proposed that circumvents the physical contact problems of a

terrestrial laboratory.

Equipment:

e 20 cm diameter chamber with hydrophobic inner surface (teflon or

silicon oil)

• Temperature control (+20>T>-40°C).

• Temperature and pressure recorders.
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Procedure:

----e Purge chamber and evacuate.

• Inject 1 cm diameter pure water droplet.

--e Establish vapor pressure and temperature equilibrium between chamber
and droplet.

• Measure and record T, P of gas in chamber.

• Decrease T of chamber (e.g., I.OC increments).

--0 Terminate upon freezing of droplet.

--e Recycle for statistics.

Approaches:

Use teflon or silicon oil on inner surface of sphere to prevent
premature ice formation on walls of chamber.

Single fluid sphere will evaporate until the ambient water vapor
pressure builds up to the saturation vapor pressure of the source
(droplet).

Uniform temperature is required throughout chamber and interior
chamber surfaces.

General Comments:

• Ambient inert gas pressure may be needed to dampen any residual

acceleration due to space laboratory movement.
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SKYLAB CONSTRAINTS AND

INFORMATION REQUIRED FOR SCREENING

PROPOSED SECOND SKYLAB SUITCASE EXPERIMENTS

Experiment Title: Circulation: 3 dimensional simulation of the atmospheric
circulation.

Ao Hard Physical Constraints: (Skylab requirements in brackets; please record
this experiments requirements)

I. Size and Geometry: (_30" x 40" x any reasonable length)
1 ft diameter sphere + 2 cubic ft of

2. Weight: (_I5Q pounds, including container)
<150 Ibs.

. Power: (28 v.d.c., _I000 watts (s500 watts preferred)

How much? 500 watts Duration? >30 minutes

w

4. Toxicity: (No toxic materials permitted)

No

5. Temperature Range/Control:

Ambient

(55 o to 92 o F range)
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o When Available? (Launch ready by mid 1975)

After 1975 for full unit; basic concept could be tried as early as
1975.

B° Priority Criteria

I. Benefits: (Why is experiment important, and to whom?)

Important to study cause and effects related to weather prediction.

**2. Is There a Champion? Dr. C, Hosler
NASA-MDAC Senior Scientific Board

. Complexity: (How simple to set up, operate? How straight forward is

final analysis?) Simple set, check list operation, straightforward

preliminary analysis. Film would be used for detailed analysis.

4. Time Requirements:

• Total

• Astronaut's

• Port, Airlock?

• Event Criticality?

30 minutes minimum

Non-cri tical

Q Unique Skylab Facilities Interface?
system, etc.) None

(Airlock, Mfg. chamber, cooling

111



6. Data Recording: (Quantity? Analog? Digital? Film, other) Visual,

voice & photographs.

7. Other Special Requirements:

etc. ) <10 -3 g

(EVA? Scientist Astronaut? slO-4g? Orbital?

8. Payload return Requirements: (wt. and vol.) Film & recorded notes.

Co General Purpose Workbench/Equipment: Would a workbench be beneficial to the

astronaut in performing the experlment? What ancilliary equipment/tools does

the experiment require that may be common to other suitcase experiments and,

if provided by the workbench, could be shared? (e.g., voltmeter, optical

bench, digital tape recorder, A-D converter, microscope, movie camera,
d.c./a.c, converter, heater, etc.)

Camera - movie

voltmeter

Do Space for Continued Comments:

*As with most proposed cloud physics experiments, the primary value of a space

platform is the low g acceleration values.

**This experiment is a part of the zero-gravity cloud physics program stud_ and
committments have been made to maintain suggestor's names with each experi-

ment. These individuals are represented by the stated Board.

Circulation: 3 dimensional simulation of the atmospheric circulation

Concept: Under zero gravity conditions, the fluid surface tension would hold a

fluid of appropriate characteristics onto the surface of a sphere. If the fluid
were ferromagnetic (these are presently available) then localized electromagnetic

sources within the sphere could be used to modify the effective viscosity at

desired points in the rotating fluid. Thus perturbations could be initiated and

the consequences could be observed.
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l

APPENDIX D - PAYLOAD I_TEGRATION CONCEPTS

The NASA maintains a Candidate Experiment Program which consolidates infor-

mation regarding experiment requirements, payload analysis, operational

constraints, and candidate _lissions. Standard experiment program definition

format sheets containing data for three zero-g cloud physics experiments

are included in this Appendix. The first experiment listed (ES-IH) is the

complete laboratory concept. The data for the subgroup experiments (ES-IH-I

and ES-IH-2) is given for independent operation, eg. (pre-Shuttle flights).

The experiments can also be performed within the complete laboratory.

The data on these format sheets represent the May 1972 concept and they are

subject to change throughout the course of the program. Prior to using this

information in any payload definition studies the originating office for

this report should be contacted.
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